Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Machine learning can predict Game of Thrones betrayals

by Joe Gershenson
January 15, 2016
in Machine Learning, Marketing & Sales
Home Topics Data Science Machine Learning
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

A few months ago, Airbnb ran a great post about how its trust and safety data scientists build machine learning models to protect users from fraud by predicting bad actors. As the piece illustrated using Game of Thrones, a highly nuanced model is required to determine something like whether someone is “good” or “evil.” But what if people aren’t just born good or evil? What if they change over time? And wouldn’t it be great if you could not only predict whether or not they would betray you, but answer the question of when they’re likely to do so?

Table of Contents

  • Applying Predictive Models to Sales & Marketing
  • Behavioral Scoring Approaches
  • Tracking a Moving Prediction Target
  • Model Evaluation Considerations: Scoring and Re-Scoring Over a Time Series
  • Conclusions: What Did We Learn from the Starks?

Applying Predictive Models to Sales & Marketing

In the predictive models our team builds for sales and marketing, the challenge of prediction over a time period is especially critical. We’re looking to uncover hidden states that can identify the precise time when someone is getting ready to make a purchase. Inspired by Airbnb, we’ll tackle another machine learning model for fantasy characters, but add a degree of difficulty that’s common in the real world of sales, where you want to know precisely when to reach out to a hot prospect. If you pretend that a potential buyer is actually a citizen of Westeros, and blur the lines of “good” and “evil” in the Airbnb model, you have to consider that everyone is a potential candidate to betray you (aka buy your product) at any time.

So, how can you predict when someone is ready to make their move (or purchase)? Our first challenge is turning our training data — a list of behaviors or activities by different characters — into features that we can process into our models. We’ll start by associating these activities with the characters that are responsible for them.

imageCharacters_03


Join the Partisia Blockchain Hackathon, design the future, gain new skills, and win!


Behavioral Scoring Approaches

One approach might be to count the total number of activities associated with each character, and use that to train our predictive models (this is similar to the way marketing automation systems score leads). Unfortunately, that won’t allow us to distinguish between activities that occurred in the past vs. recent developments. This is particularly important when trying to predict actions that might occur in the near future.

On the other hand, we could just look at the number of activities that have occurred in the recent past. This definitely helps us keep up-to-date, and solves the problem of ancient data biasing our evaluations. But what if a character hasn’t done anything recently? We’d still like our estimate of their trustworthiness to be influenced by their past actions. And we’d also like to keep some history around, because what seemed like a one-off event in the past may turn into a significant pattern and can shape future decision making.

We can therefore benefit from a hybrid approach. Suppose we combine features in the model that target activities from the entire past with a set of features that target recent data? In addition, we can use a series of windows to treat activities from the recent past differently. That way, we remember what happened three weeks ago, but we don’t give it the same weight as something that happened yesterday.

Tracking a Moving Prediction Target

It’s important to remember that the hidden state of a character can change over time. To see how this can impact our prediction target, let’s take a look at an imaginary character’s history:

Character History Image v1

You can see that in August, our model thinks that he is about to betray us (buy the product) based on his recent pattern of activity. But despite our expectations, he served loyally for months. Of course, he did eventually betray us. Since someone’s internal state (whether they’re ready to betray) can change over time, our model needs to predict whether someone is about to betray us so we know exactly when to reach out to them.

Model Evaluation Considerations: Scoring and Re-Scoring Over a Time Series

In order to know whether our model accurately reflects characters’ motives, each character should always have a score attached to them — our estimate of how trustworthy they are — and that score changes over time. This of course makes our evaluation very complex, since whether we are thinking of a character as “good” or “evil” will change over time, just like their own motives.

Another issue can occur when a score peaks for a while before leveling back off. To mitigate misleading forecasts that might cause us to temporarily mistrust a perfectly loyal character, we need to ensure that our model evaluation function looks at all the scores over time. We should penalize these mistaken scores when we retrain the model, and look at them to judge which models are better than others.

To evaluate a model, we’ll just consider the score we assigned to a character every time we scored (every day or every week), and see how well it predicts their actions in, say, the next week. If at the beginning of the week we said a character was likely to betray us, and they betrayed us on that Thursday, that’s a true positive and a victory for our model. If they didn’t betray us until next Thursday, though, we’d consider that a false positive — our model said they would betray us this week, and they didn’t. In that case we’ll also look at the score we gave them the following week.

Conclusions: What Did We Learn from the Starks?

This fictional example gives you a glimpse into how much thought and expertise should go into evaluating behavior models and coming up with the right metrics to determine the accuracy of their resulting scores. When doing machine learning over a time series, it is especially important to monitor your models and watch for drift. Keep in mind that a model could end up having multiple “false positives” associated with the same character from week to week (i.e. if it kept incorrectly predicting betrayals that didn’t happen), and this would be a clear indication that it’s time for a model refresh.

If you address all of the factors covered above, behavior scoring can be extremely useful for a wide variety of business needs. Knowing when people are going to do something (as opposed to just the open ended inevitability) is a key to predictive success.

Like this article? Subscribe to our Weekly Newsletter so you never miss out.

Follow @DataconomyMedia

Tags: AirbnbBehavioural Modelsgame of thronesMachine LearningPredictive Analysis

Related Posts

robotic process automation vs machine learning

A comprehensive comparison of RPA and ML

March 27, 2023
What is multimodal AI: Understanding GPT-4

Tracing the evolution of a revolutionary idea: GPT-4 and multimodal AI

March 15, 2023
What are natural language processing and conversational AI

A journey from hieroglyphs to chatbots: Understanding NLP over Google’s USM updates

March 14, 2023
Machine learning in asset pricing explained

Rethinking finance through the potential of machine learning in asset pricing

March 3, 2023
Exploring the intricacies of deep learning models

Exploring the intricacies of deep learning models

February 28, 2023
machine learning prediction

Insights from the game of Go: Discussing ML prediction

February 24, 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

LATEST ARTICLES

A comprehensive comparison of RPA and ML

ChatGPT now supports plugins and can access live web data

From zero to BI hero: Launching your business intelligence career

Microsoft Loop is here to keep you always in sync

Exploring the mind in the machine

Adobe Firefly AI: See ethical AI in action

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy
  • Partnership
  • Writers wanted

Follow Us

  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.