Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Criteo’s Prediction on Hadoop: How and Why it Came About

by Guillaume Turri
February 27, 2015
in Data Science
Home Topics Data Science
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

At Criteo we display online advertisement, and we sell clicks to our clients. So we have to predict, for each of our 2 billion daily banners, whether it will likely be clicked or not. That’s why we use machine learning, and we feed the algorithms of our well-oiled engine with big data.

But it has not always been like this. Actually, the shape of our prediction engine –and its underlying architecture- had to evolve as our business grew.

At first, when our dataset fitted in a SQL table, there was no need to invoke the name of Hadoop. At that time, we implemented regression tree algorithms in C#. Single process learnings took place on a single server. And we were happy.

An issue with regression tree, is that their size can explode exponentially as you add dimensions. Before our algorithm reached those limits, we improved it. First we used Bayesian networks for a while. Then we implemented generalized linear models. This change increased our performance a lot. And we were proud.

But then, as the needs of the business increased, we had to add another server. And another one. And… and we were worried that our architecture would reach its limits in a near future.

Migrating our existing solution on our Hadoop cluster seemed a healthy way to go. It was far from trivial, but it was definitely where we wanted to be. To achieve this, a lot of questions had to be answered. How do we distribute a mono-threaded gradient descent, into several mappers and reducers? How do we run an existing C# codebase on a Hadoop Linux cluster? How do we keep the reliability of an architecture developed and tuned over the years, when we apply such a big bang?

Our Prediction and Scalability teams worked hand in hand in order to answer those concerns. Our data scientists showed us how we could distribute our learnings. Technical surveillance provided tools that would fit our technology. Reliability has been handled as always, thanks to our engineering culture.

This has been one of our major work last year. It took time and effort. But the outcome met the expectations since we’ve been able to increase the size of our training set, and at the same time nearly doubling the number of trained algorithms. However, I won’t have time to talk much more about it: now there are still a lot of improvements and new technologies I want to test!

If you are curious about what we do and want to join us, have a look at our tech blog and drop us a line at  r&[email protected]!!!

-By Guillaume Turri, Software Developer, R&D, Criteo

Follow @DataconomyMedia

(Image credit: Diana Robinson, via Flickr)

Tags: Apache HadoopcCriteoData MigrationHadoopWeekly Newsletter

Related Posts

Taking pictures is so last year: “Prompt” pictures with Paragraphica

Taking pictures is so last year: “Prompt” pictures with Paragraphica

June 2, 2023
Sneak peek at Microsoft Fabric price and its promising features

Sneak peek at Microsoft Fabric price and its promising features

June 1, 2023
Skybox AI brings AI to VR

Skybox AI brings AI to VR

June 1, 2023
Whispering algorithms of smart surroundings

Whispering algorithms of smart surroundings

May 30, 2023
Infrastructure challenges and opportunities for AI startups

Infrastructure challenges and opportunities for AI startups

May 31, 2023
QR codes in AI and ML: Enhancing predictive analytics for business

QR codes in AI and ML: Enhancing predictive analytics for business

May 29, 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

LATEST ARTICLES

Trolling is fun until it is not

Taking pictures is so last year: “Prompt” pictures with Paragraphica

Operation Triangulation: Could Apple be an NSA agent, Russia asks

NEDA did not forgive Tessa’s mistake and terminated the AI chatbot after the backlash

Manage your friends list with Snapchat’s new galaxy-themed feature

Sneak peek at Microsoft Fabric price and its promising features

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy
  • Partnership
  • Writers wanted

Follow Us

  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.