Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Why we need to open up AI black boxes right now

by Kim Deen
May 24, 2019
in Artificial Intelligence, Data Natives, Data Science 101, Education, Events, Interviews, Machine Learning, Tech Trends, Technology & IT
Home Topics Data Science Artificial Intelligence
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

AI has been facing a PR problem. Too often AI has introduced itself as a misogynist, racist and sinister robot. Remember the Microsoft Twitter chatbot named Tay, who was learning to mimic online conversations, but then started to blur out the most offensive tweets?

Think of tech companies creating elaborate AI hiring tools, only to realise the technology was learning in the male-dominated industry to favour resumes of men over women. As much as this seems to be a facepalm situation, this happens a lot and seems not so easy to solve in an imperfect world, where even the most intelligent people have biases.

“Data scientists are capable of creating any sort of powerful AI weapons”,

Romeo Kienzler, head of IoT at IBM and frequent speaker at Data Natives.

“And no, I’m not talking about autonomous drones shooting innocent people. I’m talking about things like credit risk score assessment system not giving a young family a loan for building a home because of their skin color.”

These ethical questions rang alarm bells at government institutions. The UK government set up a Centre for Data Ethics and Innovation and last month the Algorithmic Accountability act was proposed in Washington. The European Union created an expert group on artificial intelligence last year, to establish an Ethics guidelines for Trustworthy Artificial Intelligence.

IBM had a role in creating these guidelines, which are crucial according to Matthias Biniok, lead Watson Architect DACH at IBM, who designed CIMON, the smiling robot assisting astronauts in space. “Only by embedding ethical principles into AI applications and processes can we build systems that people can trust,” he tells.


Join the Partisia Blockchain Hackathon, design the future, gain new skills, and win!


“A study by IBM’s Institute of Business Value found that 82% of enterprises are now at least considering AI adoption, but 55% have security and privacy concerns about the use of data.”

Matthias Biniok, lead Watson Architect DACH at IBM

AI can tilt us to the next level – but only if we tilt it first.

“Artificial intelligence is a great trigger to discuss the bias that we have as humans, but also to analyse the bias that was already inducted into machines,” Biniok tells. “Loans are a good example: today it is often not clear for a customer why a bank loan is granted or not -even the bank employee might not know why an existing system recommended against granting a loan.”

It is essential for the future of AI to open up the black boxes and get insight into the models.

“The issue of transparency in AI occurs because of the fact that even if a model has great accuracy, it does not guarantee that it will continue to work well in production”

Thomas Schaeck, IBM’s Data and AI distinguished engineer, a trusted portal architect and leader in portal integration standards.

An explainable AI model should give insight into the features on which decision making is based, to be able to address the problem.

IBM research, therefore, proposed AI factsheets, to better document how an AI system was created, tested, trained, deployed and evaluated. This should be audited throughout their lifecycle. It would also include suggestions on how a system should be operated and used. “Standardizing and publishing this information is key to building trust in AI,” says Schaeck.

Schaeck advises business owners to take a holistic view of the data science and machine learning life cycle if they are looking to invest in AI. Choose your platform wisely, is his advice. One that allows teams to gain insights and take a significant amount of models into tightly controlled, scalable production environments. “A platform, in which model outputs and inputs are recorded and can be continuously monitored and analysed for aspects like performance, fairness, etc,” he tells.

IBM’s Fairness 360 toolkit, Watson Studio, Watson Machine Learning and Watson Open Scale can help you out with this. The open-source Fairness 360 toolkit can be applied to every AI model before it goes into production. The toolkit has all the state of the art bias detection and mitigation algorithms. Watson Studio allows teams to visualize and understand data and create, train and evaluate models. In Watson Machine Learning, these models can be managed, recorded and analyzed. And as it is essential to keep on monitoring AI during its lifecycle, IBM Open Scale connects to Watson Machine Learning and the resulting input and output log data, in order to continuously monitor and analyze in-production models.

Yes, it can all be frightening. As a business owner, you don’t want to end up wasting a lot of time and resources creating a Frankenstein AI.

But it is good to keep in mind that just as our human biases are responsible for creating unfair AI, we also have the power to create AI which mitigates, or even transcends human biases. After all, tech is what we make of it.

If you would like to know more about the latest breakthroughs in AI, Cloud & Quantum Computing and get your hands on experimenting with blockchain, Kubernetes, istio, serverless architecture or cognitive application development in an environment supported by IBM experts, then join the Data & Developers Experience event that is going to take place on June 11-12 at Bikini Berlin. Register here, it’s free.

Tags: AIbias in AIData NativesIBM Watsonrobotics

Related Posts

ChatGPT now supports plugins and can access live web data

ChatGPT now supports plugins and can access live web data

March 24, 2023
business intelligence career path explained

From zero to BI hero: Launching your business intelligence career

March 24, 2023
What is the Microsoft Loop app, and how to access it? We explained everything you need to know about the new Notion rival. Keep reading...

Microsoft Loop is here to keep you always in sync

March 23, 2023
Can artificial intelligence have consciousness

Exploring the mind in the machine

March 23, 2023
Adobe Firefly AI: See ethical AI in action

Adobe Firefly AI: See ethical AI in action

March 22, 2023
Runway AI Gen-2 makes text-to-video AI generator a reality

Runway AI Gen-2 makes text-to-video AI generator a reality

March 21, 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

LATEST ARTICLES

ChatGPT now supports plugins and can access live web data

From zero to BI hero: Launching your business intelligence career

Microsoft Loop is here to keep you always in sync

Exploring the mind in the machine

Adobe Firefly AI: See ethical AI in action

A holistic perspective on transformational leadership in corporate settings

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy
  • Partnership
  • Writers wanted

Follow Us

  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.