Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Machine Learning in A Year, by Per Harald Borgen

by Per Harald Borgen
October 17, 2016
in Contributors, Education, Machine Learning
Home Contributors
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

This is a follow up to an article Per wrote last year, Machine Learning in a Week, on how he kickstarted his way into machine learning (ml) by devoting five days to the subject. Follow him on Medium and check out his archive.


Table of Contents

  • First intro: Hacker News and Udacity
  • Failing Coursera’s ML Course
  • Machine Learning in a Week
  • Failing neural networks
  • Testing out Kaggle Contests
  • Setting up a learning routine at work
  • Udacity’s Deep Learning
  • Stanford — Deep Learning for NLP
  • Boosting Sales at Xeneta

First intro: Hacker News and Udacity

My interest in ml stems back to 2014 when I started reading articles about it on Hacker News. I simply found the idea of teaching machines stuff by looking at data appealing. At the time I wasn’t even a professional developer, but a hobby coder who’d done a couple of small projects.

So I began watching the first few chapters of Udacity’s Supervised Learning course, while also reading all articles I came across on the subject.


Join the Partisia Blockchain Hackathon, design the future, gain new skills, and win!


This gave me a little bit of conceptual understanding, though no practical skills. I also didn’t finish it, as I rarely do with MOOC’s.

Failing Coursera’s ML Course

In January 2015 I joined the Founders and Coders (FAC) bootcamp in London in order to become a developer. A few weeks in, I wanted to learn how to actually code machine learning algorithms, so I started a study group with a few of my peers. Every Tuesday evening, we’d watch lectures from Coursera’s Machine Learning course.

It’s a fantastic course, and I learned a hell of a lot. But it’s tough for a beginner. I had to watch the lectures over and over again before grasping the concepts. The Octave coding task are challenging as well, especially if you don’t know Octave. As a result of the difficulty, one by one fell off the study group as the weeks passed. Eventually, I fell off it myself as well.

I hindsight, I should have started with a course that either used ml libraries for the coding tasks — as opposed to building the algorithms from scratch — or at least used a programming language I knew.

Learning a new language while also trying to code ml algorithms is too hard for a newbie.

If I could go back in time, I’d choose Udacity’s Intro to Machine Learning, as it’s easier and uses Python and Scikit Learn. This way, we would have gotten our hands dirty as soon as possible, gained confidence, and had more fun.

Lesson learned: Start with something easy and practical rather than difficult and theoretical.

Machine Learning in a Week

One of the last things I did at FAC was the ml week stunt. My goal was to be able to apply machine learning to actual problems at the end of the week, which I managed to do.

Throughout the week I did the following:

  • got to know Scikit Learn
  • tried ml on a real world dataset
  • coded a linear regression algorithm from scratch (in Python)
  • did a tiny bit of nlp

It’s by far the steepest ml learning curve I’ve ever experienced. Go ahead andread the article if you want a more detailed overview.

Lesson learned: Setting off a week solely to immerse yourself into a new subject is extremely effective.

Failing neural networks

After I finished FAC in London and moved back to Norway, I tried to repeat the success from the ml week, but for neural networks instead.

This failed.

There were simply too many distractions to spend 10 hours of coding and learning every day. I had underestimated how important it was to be surrounded by peers at FAC.

Lesson learned: Find an thriving environment to surround yourself with when doing these kinds of learning stunts.

However, I got started with neural nets at least, and slowly started to grasp the concept. By July I managed to code my first net. It’s probably the crappiest implementation ever created, and I actually find it embarrassing to show off. But it did the trick; I proved to myself that I understood concepts likebackpropagation and gradient descent.

1-pcmdygu5etxgrxeri4mp7w

In the second half of the year, my progression slowed down, as I started a new job. The most important takeaway from this period was the leap from non-vectorized to vectorized implementations of neural networks, which involved repeating linear algebra from university.

By the end of the year I wrote an article as a summary of how I learned this.

Testing out Kaggle Contests

During the christmas vacation of 2015, I got a motivational boost again and decided try out Kaggle. So I spent quite some time experimenting with various algorithms for their Homesite Quote Conversion, Otto Group Product Classification and Bike Sharing Demand contests.

1-fxm3r4u9omslih1arivz8q

The main takeaway from this was the experience of iteratively improving the results by experimenting with the algorithms and the data.

I learned to trust my logic when doing machine learning.

If tweaking a parameter or engineering a new feature seems like a good idea logically, it’s quite likely that it actually will help.

Setting up a learning routine at work

Back at work in January 2016 I wanted to continue in the flow I’d gotten into during Christmas. So I asked my manager if I could spend some time learning stuff during my work hours as well, which he happily approved.

Having gotten a basic understanding of neural networks at this point, I wanted to move on to deep learning.

Udacity’s Deep Learning

My first attempt was Udacity’s Deep Learning course, which ended up as a big disappointment. The contents of the video lectures are good, but they are too short and shallow to me.

And the IPython Notebook assignments ended up being too frustrating, as I spent most of my time debugging code errors, which is the most effective way to kill motivation. So after doing that for a couple of sessions at work, I simply gave up.

To their defense, I’m a total noob when it comes to IPython Notebooks, so it might not be as bad for you as it was for me. So it might be that I simply wasn’t ready for the course.

Stanford — Deep Learning for NLP

Luckily, I then discovered Stanford’s CS224D and decided to give it a shot. It is a fantastic course. And though it’s difficult, I never end up debugging when doing the problem sets.

Secondly, they actually give you the solution code as well, which I often look at when I’m stuck, so that I can work my way backwards to understand the steps needed to reach a solution.

Though I’ve haven’t finished it yet, it has significantly boosted my knowledge in nlp and neural networks so far.

However it’s been tough. Really tough. At one point, I realized I needed help from someone better than me, so I came in touch with a Ph.D student who was willing to help me out for 40 USD per hour, both with the problem sets as well as the overall understanding. This has been critical for me in order to move on, as he has uncovered a lot of black holes in my knowledge.

Lesson learned: It’s possible to get a good machine learning teacher for around 50 USD per hour. If you can afford it, it’s definitely worth it.

In addition to this, Xeneta also hired a data scientist recently. He’s got a masters degree in math, so I often ask him for help when I’m stuck with various linear algebra an calculus tasks, or ml in general. So be sure to check out which resources you have internally in your company as well.

Boosting Sales at Xeneta

After doing all this, I finally felt ready to do a ml project at work. It basically involved training an algorithm to qualify sales leads by reading company descriptions, and has actually proven to be a big time saver for the sales guys using the tool.

Check out out article I wrote about it below or head over to GitHub to dive straight into the code.

Getting to this point has surely been a long journey. But also a fast one; when I started my machine learning in a week project, I certainly didn’t have any hopes of actually using it professionally within a year.

But it’s 100 percent possible. And if I can do it, so can anybody else.

 

Like this article? Subscribe to our weekly newsletter to never miss out!

Follow @DataconomyMedia

 

Tags: educationMachine LearningMediumPer Harald Bogen

Related Posts

What is multimodal AI: Understanding GPT-4

Tracing the evolution of a revolutionary idea: GPT-4 and multimodal AI

March 15, 2023
What are natural language processing and conversational AI

A journey from hieroglyphs to chatbots: Understanding NLP over Google’s USM updates

March 14, 2023
Machine learning in asset pricing explained

Rethinking finance through the potential of machine learning in asset pricing

March 3, 2023
Exploring the intricacies of deep learning models

Exploring the intricacies of deep learning models

February 28, 2023
machine learning prediction

Insights from the game of Go: Discussing ML prediction

February 24, 2023
embedded machine learning 101

Exploring the exciting possibilities of embedded machine learning for consumers

February 13, 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

LATEST ARTICLES

Mastering the art of storage automation for your enterprise

Can Komo AI be the alternative to Bing?

LinkedIn AI won’t take your job but will help you find one

Where does your data go: Inside the world of blockchain storage

OpenAI released GPT-4, the highly anticipated successor to ChatGPT

Tracing the evolution of a revolutionary idea: GPT-4 and multimodal AI

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy
  • Partnership
  • Writers wanted

Follow Us

  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.