Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Machine Learning and Fraud: Why Artificial Intelligence Isn’t Enough

byRafael Lourenco
May 17, 2016
in Artificial Intelligence

Machine-learning is all the rage in fraud detection, with industry analysts, academics, businesses and technology media examining the advantages of algorithms and big data in the fight against e-commerce fraud. Especially for fraud analysts working in companies with small budgets , machine-learning tools are seen as a cost-effective way to tighten fraud controls while maintaining fast decision times, as Forrester noted in its 2015 cross-channel fraud report. There’s no question that machine-learning tools can be an effective component of fraud reduction program, but relying on them to save staffing costs may not be cost-effective in the long run.

That’s because while machine learning is an invaluable tool in the fight against fraud, it relies on human input and insight to create a comprehensive solution that yields the best results.

Overreliance on automated screening leads to more false declines

Algorithms are useful for identifying potential fraud quickly, but due to variability in consumer behavior – such as making online purchases while traveling abroad — some transactions will be falsely flagged for decline. The costs associated with false declines are too high to ignore. US merchants lose much more money on false declines than on confirmed fraud — $118 billion in false declines, compared to $9 billion in actual fraud, according to MasterCard and Javelin research.

What hasn’t been quantified is the cost of the customer relationships ended by false declines. MasterCard and Javelin found that 32% of customers who received a false transaction decline never shopped with that merchant again. Considering the cost of lost future purchases, as well as the higher relative cost of attracting new customers compared to retaining existing ones, this likely has a considerable impact on merchants.

The solution that protects merchants from fraud and lost business is to combine machine-learning algorithms with data collected by human analysts. Writing about machine-learning and card fraud for The Conversation, Penn State associate professor Jungwoo Ryoo noted that “people can still play a role – either when validating a fraud or following up with a rejected transaction.” This human intervention can reduce the number of falsely declined transactions in the short term, and when the analysts add those transaction outcomes into their data sets, it makes the automated tools smarter.

What machines need to learn varies by segment and merchant

The most effective algorithms will take into account the particular fraud patterns found within the merchant’s segments and geographic markets, as well as the changes that occur in those spaces. For example, the PYMNTS Global Fraud Attack Index found that in 2013, the digital goods segment faced high rates of suspected botnet fraud, while friendly fraud was a problem in the luxury goods segment.

More specifically, different merchants within the same segment may be subject to different mixes of fraud attempts or specific fraud patterns that algorithms must learn to detect. Experienced analysts who’ve worked extensively within a particular segment or who have long-term relationships with specific clients will have the detailed information needed to augment and improve algorithmic fraud screening at the segment and client level.
Besides historical knowledge, human analysts are the best protection against new types of fraud attempts that may launch on a small scale before ramping up to a larger and more damaging attack. These “observers on the battlefield” can raise the alert and ensure that the new data becomes part of the algorithm’s database.

What machines can’t do – yet

Algorithms are one of the technological tools that make modern e-commerce possible and relatively safe, but they can’t stand alone as a defense against fraud perpetrated by determined criminals. The advantages that human analysts bring to the process for the foreseeable future include creative problem-solving, deep knowledge of client and segment fraud landscapes, the ability to communicate directly with customers involved in flagged transactions, and the experience and intuition to pick out new fraud patterns as they develop. As long as humans are the ones perpetrating fraud against e-commerce merchants, it will ultimately be up to humans – and their smart technology – to thwart them.

Like this article? Subscribe to our weekly newsletter to never miss out!

Follow @DataconomyMedia

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

Tags: artificial intelligenceFraudMachine LearningSecurity

Related Posts

Google Photos AI expands to 100+ countries

Google Photos AI expands to 100+ countries

November 12, 2025
YouTube launches on-screen AI chat that explains videos in real time

YouTube launches on-screen AI chat that explains videos in real time

November 12, 2025
Samsung turns its TVs into AI-powered home assistants with Vision AI Companion

Samsung turns its TVs into AI-powered home assistants with Vision AI Companion

November 12, 2025
New Broadcom chip could make your next TV an instant translator

New Broadcom chip could make your next TV an instant translator

November 11, 2025
Google turns Maps into a playground for AI agents and builders

Google turns Maps into a playground for AI agents and builders

November 11, 2025
A startup backed by Nvidia wants to build AI data centers in space

A startup backed by Nvidia wants to build AI data centers in space

November 10, 2025
Please login to join discussion

LATEST NEWS

Tech News Today: OpenAI’s Sora burn, Microsoft’s AGI efforts and AI stitched into every screen

Don’t miss: The Game Awards to be live on Amazon Prime Video

Collins Dictionary names “vibe coding” the 2025 word of the year

Google Photos AI expands to 100+ countries

Masayoshi Son trades Nvidia profits for a $30B AI spending spree

Nintendo rolls out quality-of-life updates for both Switch generations

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.