Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

The One Language A Data Scientist Must Master

byMatt Reaney
October 30, 2014
in Articles
Home Resources Articles
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

When business leaders read about (and tackle) Big Data, there is a lot to take in.

The field is developing so dynamically that many of the industry buzzwords will not have existed until a few short years ago. Just a short list of some programming languages is enough to make most business leaders dizzy. R, C, Python, Java, Julia, Scala, Ruby ….. just a few of the languages that our grandchildren might be learning at high school. There will be many others; you can be sure of that.

There is one language in which every Data Scientist should be fluent: Business

As recruiters, we, of course, assess our candidates for the hard, technical skills. We look at the projects that they have completed. How they rate on Kaggle. We can do rigid technical competency checks to ascertain their professional level. That is all measureable. You either have the knowledge and the skills or you don’t.

However, the difference between a good Data Scientist and a GREAT Data Scientist is often not found in their technical ability or their amazing mathematical genius. Nope. Data Science exists to provide a service to business and business is run by people. If Data Scientists cannot comfortably communicate with their non-expert colleagues and bosses, then their effectiveness is greatly reduced. They need to be able to speak easily with people, to understand, to interpret, to translate.

They have to understand the issues of their business and give guidance in providing the data to reach the best solutions. They have to be adept at facilitating a continuous dialogue loop – from business to the Data Science / Big Data teams and then back to the business. Great data scientists will not just address business problems; they will pick the right problems that can have the most value to the organization.

They have to be able to present their findings in a clear and simple way – in the language of their business. Not all people understand the technical jargon. The candidates who can explain what they have achieved without blowing my mind with jargon are those who usually go far. Accurate numbers and graphs are one thing, but only the data scientist understands them well enough to be able to draw the crucial business conclusions. They have to interpret and translate.

Many mid-level candidates struggle with this initially. They have not had much senior management interaction and have mostly been fairly insular in terms of their work circle within a company. The solution going forward is to give them more exposure to the business, and to introduce the value of Big Data to their respective mid-management colleagues across all departments.

The organizations making the most of Big Data are now integrating their Data Science teams far closer with the rest of their business. They will grow up together as a team and learn to talk to each other more effectively.

They will learn to speak each other’s language.

Follow @DataconomyMedia


290662aMatt Reaney is the Founder and Director at Big Cloud. Big Cloud is a talent search firm focussing on all things Big Data and helps innovative organisations across Europe, APAC and the US find the talent they need to grow.


Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

When business leaders read about (and tackle) Big Data, there is a lot to take in.

The field is developing so dynamically that many of the industry buzzwords will not have existed until a few short years ago. Just a short list of some programming languages is enough to make most business leaders dizzy. R, C, Python, Java, Julia, Scala, Ruby ….. just a few of the languages that our grandchildren might be learning at high school. There will be many others; you can be sure of that.

There is one language in which every Data Scientist should be fluent: Business

As recruiters, we, of course, assess our candidates for the hard, technical skills. We look at the projects that they have completed. How they rate on Kaggle. We can do rigid technical competency checks to ascertain their professional level. That is all measureable. You either have the knowledge and the skills or you don’t.

However, the difference between a good Data Scientist and a GREAT Data Scientist is often not found in their technical ability or their amazing mathematical genius. Nope. Data Science exists to provide a service to business and business is run by people. If Data Scientists cannot comfortably communicate with their non-expert colleagues and bosses, then their effectiveness is greatly reduced. They need to be able to speak easily with people, to understand, to interpret, to translate.

They have to understand the issues of their business and give guidance in providing the data to reach the best solutions. They have to be adept at facilitating a continuous dialogue loop – from business to the Data Science / Big Data teams and then back to the business. Great data scientists will not just address business problems; they will pick the right problems that can have the most value to the organization.

They have to be able to present their findings in a clear and simple way – in the language of their business. Not all people understand the technical jargon. The candidates who can explain what they have achieved without blowing my mind with jargon are those who usually go far. Accurate numbers and graphs are one thing, but only the data scientist understands them well enough to be able to draw the crucial business conclusions. They have to interpret and translate.

Many mid-level candidates struggle with this initially. They have not had much senior management interaction and have mostly been fairly insular in terms of their work circle within a company. The solution going forward is to give them more exposure to the business, and to introduce the value of Big Data to their respective mid-management colleagues across all departments.

The organizations making the most of Big Data are now integrating their Data Science teams far closer with the rest of their business. They will grow up together as a team and learn to talk to each other more effectively.

They will learn to speak each other’s language.

Follow @DataconomyMedia


290662aMatt Reaney is the Founder and Director at Big Cloud. Big Cloud is a talent search firm focussing on all things Big Data and helps innovative organisations across Europe, APAC and the US find the talent they need to grow.


When business leaders read about (and tackle) Big Data, there is a lot to take in.

The field is developing so dynamically that many of the industry buzzwords will not have existed until a few short years ago. Just a short list of some programming languages is enough to make most business leaders dizzy. R, C, Python, Java, Julia, Scala, Ruby ….. just a few of the languages that our grandchildren might be learning at high school. There will be many others; you can be sure of that.

There is one language in which every Data Scientist should be fluent: Business

As recruiters, we, of course, assess our candidates for the hard, technical skills. We look at the projects that they have completed. How they rate on Kaggle. We can do rigid technical competency checks to ascertain their professional level. That is all measureable. You either have the knowledge and the skills or you don’t.

However, the difference between a good Data Scientist and a GREAT Data Scientist is often not found in their technical ability or their amazing mathematical genius. Nope. Data Science exists to provide a service to business and business is run by people. If Data Scientists cannot comfortably communicate with their non-expert colleagues and bosses, then their effectiveness is greatly reduced. They need to be able to speak easily with people, to understand, to interpret, to translate.

They have to understand the issues of their business and give guidance in providing the data to reach the best solutions. They have to be adept at facilitating a continuous dialogue loop – from business to the Data Science / Big Data teams and then back to the business. Great data scientists will not just address business problems; they will pick the right problems that can have the most value to the organization.

They have to be able to present their findings in a clear and simple way – in the language of their business. Not all people understand the technical jargon. The candidates who can explain what they have achieved without blowing my mind with jargon are those who usually go far. Accurate numbers and graphs are one thing, but only the data scientist understands them well enough to be able to draw the crucial business conclusions. They have to interpret and translate.

Many mid-level candidates struggle with this initially. They have not had much senior management interaction and have mostly been fairly insular in terms of their work circle within a company. The solution going forward is to give them more exposure to the business, and to introduce the value of Big Data to their respective mid-management colleagues across all departments.

The organizations making the most of Big Data are now integrating their Data Science teams far closer with the rest of their business. They will grow up together as a team and learn to talk to each other more effectively.

They will learn to speak each other’s language.

Follow @DataconomyMedia


290662aMatt Reaney is the Founder and Director at Big Cloud. Big Cloud is a talent search firm focussing on all things Big Data and helps innovative organisations across Europe, APAC and the US find the talent they need to grow.


Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

When business leaders read about (and tackle) Big Data, there is a lot to take in.

The field is developing so dynamically that many of the industry buzzwords will not have existed until a few short years ago. Just a short list of some programming languages is enough to make most business leaders dizzy. R, C, Python, Java, Julia, Scala, Ruby ….. just a few of the languages that our grandchildren might be learning at high school. There will be many others; you can be sure of that.

There is one language in which every Data Scientist should be fluent: Business

As recruiters, we, of course, assess our candidates for the hard, technical skills. We look at the projects that they have completed. How they rate on Kaggle. We can do rigid technical competency checks to ascertain their professional level. That is all measureable. You either have the knowledge and the skills or you don’t.

However, the difference between a good Data Scientist and a GREAT Data Scientist is often not found in their technical ability or their amazing mathematical genius. Nope. Data Science exists to provide a service to business and business is run by people. If Data Scientists cannot comfortably communicate with their non-expert colleagues and bosses, then their effectiveness is greatly reduced. They need to be able to speak easily with people, to understand, to interpret, to translate.

They have to understand the issues of their business and give guidance in providing the data to reach the best solutions. They have to be adept at facilitating a continuous dialogue loop – from business to the Data Science / Big Data teams and then back to the business. Great data scientists will not just address business problems; they will pick the right problems that can have the most value to the organization.

They have to be able to present their findings in a clear and simple way – in the language of their business. Not all people understand the technical jargon. The candidates who can explain what they have achieved without blowing my mind with jargon are those who usually go far. Accurate numbers and graphs are one thing, but only the data scientist understands them well enough to be able to draw the crucial business conclusions. They have to interpret and translate.

Many mid-level candidates struggle with this initially. They have not had much senior management interaction and have mostly been fairly insular in terms of their work circle within a company. The solution going forward is to give them more exposure to the business, and to introduce the value of Big Data to their respective mid-management colleagues across all departments.

The organizations making the most of Big Data are now integrating their Data Science teams far closer with the rest of their business. They will grow up together as a team and learn to talk to each other more effectively.

They will learn to speak each other’s language.

Follow @DataconomyMedia


290662aMatt Reaney is the Founder and Director at Big Cloud. Big Cloud is a talent search firm focussing on all things Big Data and helps innovative organisations across Europe, APAC and the US find the talent they need to grow.


Tags: Big CloudcjavaMatt ReaneypythonRRubysurveillance

Related Posts

How to estimate your personal loan payments with simple steps

How to estimate your personal loan payments with simple steps

December 12, 2025
Tokenization and how is it changing traditional markets

Tokenization and how is it changing traditional markets

December 12, 2025
“The LLM productivity cliff”: New research offering a different lens on AI productivity

“The LLM productivity cliff”: New research offering a different lens on AI productivity

December 11, 2025
Xenco Medical Wins 2025 World Economic Forum Award for Excellence in Governance and Leadership for Global Challenges

Xenco Medical Wins 2025 World Economic Forum Award for Excellence in Governance and Leadership for Global Challenges

December 4, 2025
How Magicrypto Helps U.S. Investors Earn Stable and Safe Passive Crypto Income

How Magicrypto Helps U.S. Investors Earn Stable and Safe Passive Crypto Income

November 13, 2025
Wysh Puts Free Life Insurance on Stablecoin Accounts

Wysh Puts Free Life Insurance on Stablecoin Accounts

November 6, 2025
Please login to join discussion

LATEST NEWS

The Game Awards 2025: Clair Obscur sweeps Oscars of gaming amid massive announcements

Trump signs executive order limiting state AI laws

Meet the world’s smallest AI supercomputer that fits in your pocket

Samsung is building a global shutter-level sensor for the Galaxy S26

Google now lets you try on clothes virtually with just a selfie

Fortnite returns to Google Play Store after 5-year antitrust battle

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.