Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • AI toolsNEW
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • AI toolsNEW
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Meet Microsoft Magentic-One: A generalist multi-agent AI system

Magentic-One is a generalist multi-agent system that uses an orchestrator to coordinate different agents, each specializing in a particular task.

byKerem Gülen
November 7, 2024
in Artificial Intelligence, News
Home News Artificial Intelligence
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

Microsoft has introduced a new multi-agent artificial intelligence (AI) system called Magentic-One, designed to complete complex tasks using multiple specialized agents. Available as an open-source tool on Microsoft AutoGen, this system aims to assist developers and researchers in creating applications that can autonomously manage multi-step tasks across various domains.

What is Magentic-One?

Magentic-One is a generalist multi-agent system that uses an orchestrator to coordinate different agents, each specializing in a particular task. The lead agent, called the Orchestrator, works alongside four specialized agents:

  • WebSurfer agent: Handles web browsing, clicks, and web content summarization.
  • FileSurfer agent: Manages local files, directories, and folders.
  • Coder agent: Writes and executes code, analyzes information, and creates new projects.
  • ComputerTerminal agent: Provides a console for program execution by the Coder Agent.

These agents work together to solve open-ended tasks, making Magentic-One suitable for applications like software engineering, data analysis, and scientific research. Microsoft describes Magentic-One as a “flexible and scalable alternative to single-agent systems” due to its modular design, which allows agents to be added or removed without affecting the system’s core structure.

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

Meet Microsoft Magnetic-One: A generalist multi-agent AI system
These agents work together to solve open-ended tasks, making Magentic-One suitable for applications (Image: Microsoft)

Key features

Magentic-One stands out because of its ability to activate multiple agents using a single language model. The system can perform various tasks, from navigating web browsers to executing Python code. This functionality means it can handle real-world scenarios such as booking tickets, purchasing products, or editing documents on a local device.

The modular multi-agent architecture ensures that each agent has a distinct responsibility, resulting in higher efficiency for complex, multi-step tasks. This approach enables Magentic-One to divide a problem into subtasks, improving both accuracy and speed of task completion. For example, if the system is asked to book a movie ticket, each agent will handle a different part of the task, such as processing visual information, navigating the website, and completing the transaction.

Microsoft’s AutoGen framework powers Magentic-One, supporting integration with various large and small language models to meet different cost and performance requirements. Currently, the system is tested with models like GPT-4o and OpenAI’s o1-preview, though it remains model-agnostic, allowing for future flexibility.

To assess the effectiveness of Magentic-One, Microsoft has also released AutoGenBench, a tool that evaluates agentic performance on several benchmarks such as GAIA, AssistantBench, and WebArena. These benchmarks focus on tasks like multi-step planning and tool usage. Microsoft’s initial tests from October 2024 indicate that Magentic-One delivers competitive results against state-of-the-art methods.

https://www.microsoft.com/en-us/research/uploads/prod/2024/11/citations_m1.mp4

Video: Microsoft

The growing trend: Multi-agent systems

Magentic-One is part of a growing trend towards multi-agent AI systems. OpenAI has introduced Swarm, another framework aimed at building and deploying multi-agent systems. Similarly, IBM launched the Bee Agent Framework, an open-source toolkit that supports deploying agent-based workflows, compatible with models like IBM Granite and Llama 3.2. These systems, much like Magentic-One, aim to offer scalable solutions to complex problem-solving tasks.

According to Microsoft, “Magentic-One’s plug-and-play design supports easy adaptation and extensibility by enabling agents to be added or removed without altering other agents or the overall architecture.” This flexibility is particularly important for evolving business needs and new applications, making Magentic-One a promising tool for researchers and developers seeking to create more adaptive AI systems.


Featured image credit: Kerem Gülen/Ideogram

Tags: FeaturedMicrosoft

Related Posts

PETKIT unveils AI-powered pet care ecosystem at CES 2026

PETKIT unveils AI-powered pet care ecosystem at CES 2026

January 5, 2026
SwitchBot unveils onero H1 robot and Smart Home 2.0 at CES 2026

SwitchBot unveils onero H1 robot and Smart Home 2.0 at CES 2026

January 5, 2026
Mercedes-Benz unveils all-new electric GLC at CES 2026

Mercedes-Benz unveils all-new electric GLC at CES 2026

January 5, 2026
Bosch unveils AI extension platform for smart cockpits at CES 2026

Bosch unveils AI extension platform for smart cockpits at CES 2026

January 5, 2026
Bosch eBike Systems unveils digital theft protection at CES 2026

Bosch eBike Systems unveils digital theft protection at CES 2026

January 5, 2026
GameSir to showcase new gaming gear at CES 2026

GameSir to showcase new gaming gear at CES 2026

January 5, 2026

LATEST NEWS

PETKIT unveils AI-powered pet care ecosystem at CES 2026

SwitchBot unveils onero H1 robot and Smart Home 2.0 at CES 2026

Mercedes-Benz unveils all-new electric GLC at CES 2026

Bosch unveils AI extension platform for smart cockpits at CES 2026

Bosch eBike Systems unveils digital theft protection at CES 2026

GameSir to showcase new gaming gear at CES 2026

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • AI tools
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.