Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

“I suspect in five years or so, the generalist ‘data scientist’ may not exist” – Interview with Data Scientist Trey Causey

byPeadar Coyle
December 2, 2015
in Conversations
Home Conversations

member_146945402
Trey Causey is a blogger with experience as a professional data scientist in sports analytics and e-commerce. He’s got some fantastic views about the state of the industry.

 


What project have you worked on do you wish you could go back to, and do better?

The easy and honest answer would be to say all of them. More concretely, I’d love to have had more time to work on my current project, the NYT 4th Down Bot before going live. The mission of the bot is to show fans that there is an analytical way to go about deciding what to do on 4th down (in American football), and that the conventional wisdom is often too conservative. Doing this means you have to really get the “obvious” calls correct as close to 100% of the time as possible, but we all know how easy it is to wander down the path to overfitting in these circumstances…

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

What advice do you have to younger analytics professionals and in particular PhD students in the Sciences and Social Sciences?

Students should take as many methods classes as possible. They’re far more generalizable than substantive classes in your discipline. Additionally, you’ll probably meet students from other disciplines and that’s how constructive intellectual cross-fertilization happens. Additionally, learn a little bit about software engineering (as distinct from learning to code). You’ll never have as much time as you do right now for things like learning new skills, languages, and methods. For young professionals, seek out someone more senior than yourself, either at your job or elsewhere, and try to learn from their experience. A word of warning, though, it’s hard work and a big obligation to mentor someone, so don’t feel too bad if you have hard time finding someone willing to do this at first. Make it worth their while and don’t treat it as your “right” that they spend their valuable time on you. I wish this didn’t even have to be said.

What do you wish you knew earlier about being a data scientist?

It’s cliche to say it now, but how much of my time would be spent getting data, cleaning data, fixing bugs, trying to get pieces of code to run across multiple environments, etc. The “nuts and bolts” aspect takes up so much of your time but it’s what you’re probably least prepared for coming out of school.

How do you respond when you hear the phrase ‘big data’?

Indifference.

What is the most exciting thing about your field?

Probably that it’s just beginning to even be ‘a field.’ I suspect in five years or so, the generalist ‘data scientist’ may not exist as we see more differentiation into ‘data engineer’ or ‘experimentalist’ and so on. I’m excited about the prospect of data scientists moving out of tech and into more traditional companies. We’ve only really scratched the surface of what’s possible or, amazingly, not located in San Francisco.

How do you go about framing a data problem – in particular, how do you avoid spending too long, how do you manage expectations etc. How do you know what is good enough?

A difficult question along the lines of “how long is a piece of string?” I think the key is to communicate early and often, define success metrics as much as possible at the *beginning* of a project, not at the end of a project. I’ve found that “spending too long” / navel-gazing is a trope that many like to level at data scientists, especially former academics, but as often as not, it’s a result of goalpost-moving and requirement-changing from management. It’s important to manage up, aggressively setting expectations, especially if you’re the only data scientist at your company.

How do you explain to C-level execs the importance of Data Science? How do you deal with the ‘educated selling’ parts of the job? In particular – how does this differ from sports and industry?

Honestly, I don’t believe I’ve met any executives who were dubious about the value of data or data science. The challenge is often either a) to temper unrealistic expectations about what is possible in a given time frame (we data scientists mostly have ourselves to blame for this) or b) to convince them to stay the course when the data reveal something unpleasant or unwelcome.

What is the most exciting thing you’ve been working on lately and tell us a bit about it.

I’m about to start a new position as the first data scientist at ChefSteps, which I’m very excited about, but I can’t tell you about what I’ve been working on there as I haven’t started yet. Otherwise, the 4th Down Bot has been a really fun project to work on. The NYT Graphics team is the best in the business and is full of extremely smart and innovative people. It’s been amazing to see the thought and time that they put into projects.

What is the biggest challenge of leading a data science team?

I’ve written a lot about unrealistic expectations that all data scientists be “unicorns” and be experts in every possible field, so for me the hardest part of building a team is finding the right people with complementary skills that can work together amicably and constructively. That’s not special to data science, though.

Tags: Big DataCodedata science

Related Posts

Data Sanity in an AI World: How to Drive Real Business Value

Data Sanity in an AI World: How to Drive Real Business Value

July 29, 2025
When a model touches millions: Hatim Kagalwala on accuracy accountability, and applied machine learning

When a model touches millions: Hatim Kagalwala on accuracy accountability, and applied machine learning

July 9, 2025
Jeff Mahony: The Maverick Investor’s Guide to Real-World Success

Jeff Mahony: The Maverick Investor’s Guide to Real-World Success

June 27, 2025
AI Redefines Filmmaking Landscape, Expert Says, Unlocking Creativity and Sparking Ethical Debates

AI Redefines Filmmaking Landscape, Expert Says, Unlocking Creativity and Sparking Ethical Debates

June 25, 2025
Conversations with Trailblazing Women: Professor Dame Wendy Hall of University of Southampton

Conversations with Trailblazing Women: Professor Dame Wendy Hall of University of Southampton

June 2, 2025
Domain-Agnostic AI: Dmytro Afanasiev’s methodology for scaling technological innovations across industry barriers

Domain-Agnostic AI: Dmytro Afanasiev’s methodology for scaling technological innovations across industry barriers

June 1, 2025
Please login to join discussion

LATEST NEWS

Psychopathia Machinalis and the path to “Artificial Sanity”

GPT-4o Mini is fooled by psychology tactics

AI reveals what doctors cannot see in coma patients

Asian banks fight fraud with AI, ISO 20022

Android 16 Pixel bug silences notifications

Azure Integrated HSM hits every Microsoft server

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.