Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

The Data Science Skills Network

byFerris Jumah
August 19, 2015
in Articles
Home Resources Articles

335eeed Ferris is a full stack data scientist at LinkedIn who enjoys building products at the forefront of intelligent technology. He understands that the next generation won’t be concerned with how to use technology to do things, but will expect technology to do and adapt for them.


As a data scientist, I am usually heads down in numbers, patterns, and code, but as crazy as it sounds, one of the hardest parts of my job is actually describing what I do. There are plenty of resources that offer descriptions and guides on the career of a data scientist. I’ve heard them described as those at the intersection of statistics, hacking abilities, and domain expertise. Or, as data analysts who live in San Francisco.

Rather than add a new definition to the collection, I thought I’d take a data-centric approach towards defining the role. I looked at what skills people with the title “Data Scientist” have listed on their LinkedIn profiles and aggregated the top ten by occurrence*.

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

Most Popular Data Science Skills

*Corrected using a measure called TFIDF

While this list sheds some light on what skills are most frequently included on the profiles of data scientists, it’s difficult to understand how they relate to each other when we’re just looking at a stagnant ranking. To dig a bit deeper, I explored the relationships among these skills by representing and visualizing them as a network. A’la, the Data Science Skill Network (High Res Image):

Data Science Skills

In the network, each node is a skill. Skills are connected when both are listed together in a profile, with the connection growing stronger the more often they are listed together. Since the goal was to visualize the relationships between skills, I clustered similar skills together, represented by colors. Next, skills were sized depending on how well connected they were, and to what extent they influenced other skills in the network, using a measure called network centrality. While there are plenty of conclusions to be drawn, both figures highlight a few key themes. Namely, that today’s data scientists typically:

Approach data with a mathematical mindset

  • We see that machine learning, data mining, data analysis and statistics are all highly ranking skills in the network. This indicates that being able to understand and represent data mathematically, with statistical intuition, is a key skill for data scientists.

Use a common language to access, explore and model data

  • Python, R, and Matlab are the three most popular languages for visualization and model development and SQL is the most common for data access. When it comes to data, extracting, exploring, and testing hypotheses is a big part of the job, so it’s no surprise to see these skills rising to the top.

Develop strong computer science and software engineering backgrounds

  • We also see computer science and software engineering skillsets, with Java, C++, Algorithms, and Hadoop all having notable real estate on the Network visualization. These are skills that are primarily used to leverage data to architect systems.

In my experience, most data scientists will not be experts in all of these categories (math, tools, and software development), but, instead, specialize or hone their skills in one or two of them. These are, therefore, a more holistic view of the skills represented within a typical data science team.

I hope this helped to shed some light on what a data scientist is, and what skills are required to become one. These analyses are all pulled from the skills you list on your LinkedIn profile so hopefully it is also a reminder for you to keep your profile up to date.

Thank you, and I’d be interested in hearing your thoughts below.

(This post was originally published on LinkedIn.)

Tags: data science skillssurveillanceWeekly Newsletter

Related Posts

When Regulation Embraces Innovation: Xenco Medical Founder and CEO Jason Haider Discusses the Upcoming 2026 CMS Transforming Episode Accountability Model

When Regulation Embraces Innovation: Xenco Medical Founder and CEO Jason Haider Discusses the Upcoming 2026 CMS Transforming Episode Accountability Model

August 26, 2025
DeFAI and the Future of AI Agents

DeFAI and the Future of AI Agents

July 26, 2025
Unifying the fragmented AI ecosystem: A new paradigm for generative AI workflows

Unifying the fragmented AI ecosystem: A new paradigm for generative AI workflows

July 21, 2025

How to plan for technical debt before it buries you

July 21, 2025
Optimizing performance for a global user base

Optimizing performance for a global user base

July 17, 2025
How the right FPS mouse can make or break your game (or workflow)

How the right FPS mouse can make or break your game (or workflow)

July 14, 2025
Please login to join discussion

LATEST NEWS

AI agents lead to 4,000 job cuts in Salesforce’s support division, CEO says

How synthetic data is reshaping AI model training

The future of free online engineering tools: Trends and innovations

Xbox rolls out cross-device play history feature globally

MathGPT.ai expands to 50+ colleges with “cheat-proof” AI tutor

Windows 11 OOBE update installs start September 2025

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.