Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • AI toolsNEW
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • Who we are
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • AI toolsNEW
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • Who we are
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Your future quantum computer might be built on standard silicon after all

The research team achieved entanglement at a distance of approximately twenty nanometers between nuclei.

byAytun Çelebi
November 25, 2025
in Research
Home Research
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

UNSW researchers entangled atomic nuclei via electrons, achieving quantum communication at scales compatible with current computer chips, advancing silicon quantum computing.

UNSW engineers developed quantum entangled states using the spins of two atomic nuclei. Entanglement is crucial for quantum computing’s advantages over conventional systems. This research, published in Science on September 18, represents a step toward large-scale quantum computers.

Lead author Dr. Holly Stemp stated this achievement enables the construction of future quantum computing microchips using existing technology and manufacturing processes. She noted, “We succeeded in making the cleanest, most isolated quantum objects talk to each other, at the scale at which standard silicon electronic devices are currently fabricated.”

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

Quantum computer engineering balances shielding computing elements from interference with enabling their interaction for computations. This challenge contributes to the diversity of quantum hardware approaches. Some offer speed but suffer from noise, while others are shielded but difficult to operate and scale.

The UNSW team utilized the nuclear spin of phosphorus atoms, implanted in a silicon chip, to encode quantum information. Scientia Professor Andrea Morello from UNSW’s School of Electrical Engineering & Telecommunications described the atomic nucleus spin as “the cleanest, most isolated quantum object one can find in the solid state.”

Professor Morello detailed the group’s prior work over 15 years, which involved breakthroughs in this technology. They demonstrated holding quantum information for over 30 seconds and performing quantum logic operations with less than 1% errors. He stated they were “the first in the world to achieve this in a silicon device.” However, he noted the isolation benefiting atomic nuclei made connecting them in a large-scale quantum processor difficult.

Previously, operating multiple atomic nuclei required them to be very close within a solid, surrounded by a single electron. Dr. Stemp explained that while an electron can “spread out” to interact with multiple atomic nuclei, its range is limited. She added, “adding more nuclei to the same electron makes it very challenging to control each nucleus individually.”

The breakthrough involved atomic nuclei communicating through electronic ‘telephones,’ which are electrons. Dr. Stemp used the metaphor of people in a sound-proof room, where conversations were clear but limited in scale. The ‘telephones’ enable communication between rooms, creating more scalable interactions while maintaining isolation.

Mark van Blankenstein, another author, explained that two electrons can “touch” at a distance due to their ability to spread out. If each electron couples to an atomic nucleus, the nuclei can communicate through them. The distance between the nuclei in the experiments was approximately 20 nanometers. Dr. Stemp highlighted that if a nucleus were scaled to human size, this distance would be comparable to that between Sydney and Boston.

She emphasized that 20 nanometers is the scale of modern silicon computer chips used in personal computers and mobile phones. This means manufacturing processes developed by the semiconductor industry can be adapted for quantum computers based on atomic nuclei spins.

These devices are compatible with current computer chip manufacturing. Phosphorus atoms were introduced into the chip by Professor David Jamieson’s team at the University of Melbourne, using ultra-pure silicon from Professor Kohei Itoh at Keio University in Japan.

By eliminating the need for atomic nuclei to be attached to the same electron, the UNSW team addressed a key obstacle to scaling silicon quantum computers based on atomic nuclei. Professor Morello described their method as “remarkably robust and scalable.” He added that in the future, more electrons could be used and shaped to spread nuclei further. “Electrons are easy to move around and to ‘massage’ into shape, which means the interactions can be switched on and off quickly and precisely. That’s exactly what is needed for a scalable quantum computer.”


Featured image credit

Tags: quantum computing

Related Posts

Appfigures: Mobile app spending hits record 5.8 billion

Appfigures: Mobile app spending hits record $155.8 billion

January 15, 2026
Engineers build grasshopper-inspired robots to solve battery drain

Engineers build grasshopper-inspired robots to solve battery drain

January 14, 2026
Global memory chip shortage sends PC prices soaring

Global memory chip shortage sends PC prices soaring

January 12, 2026
63% of new AI models are now based on Chinese tech

63% of new AI models are now based on Chinese tech

January 12, 2026
Physics at -271°C: How the cold is heating up quantum computing

Physics at -271°C: How the cold is heating up quantum computing

January 8, 2026
Nature study projects 2B wearable health devices by 2050

Nature study projects 2B wearable health devices by 2050

January 7, 2026

LATEST NEWS

Spotify slams subscribers with $2 increase on Duo and Family plans

OpenAI launches standalone ChatGPT Translate

Beyond the Clinical Walls: Why Providers Are Investing in Oncology-Specific Virtual Navigation and Psychosocial Care

DeepSeek V4 and R2 launch timing stays hidden

Samsung and Fender launch guitar lessons for 2025 TVs

NVIDIA force-upgrades RTX graphics with DLSS 4.5 official release

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • AI tools
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • Who we are
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.