Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

DeepSeek releases R1 model trained for $294,000 on 512 H800 GPUs

The model achieved competitive performance against higher-budget rivals, demonstrating efficiency in mathematics, programming, and problem-solving tasks.

byAytun Çelebi
September 19, 2025
in Artificial Intelligence

The Chinese company DeepSeek AI has released its large language model, R1, which was trained for only $294,000 using 512 Nvidia H800 GPUs.

In a paper published in the journal Nature, the company detailed how it achieved this low cost by using a trial-and-error reinforcement learning method, allowing the model to achieve competitive performance against rivals with much larger budgets, like OpenAI.

How DeepSeek’s reinforcement learning method works

DeepSeek’s key innovation was to move away from the expensive, human-intensive process of creating annotated datasets. Traditional AI models for reasoning tasks are often trained on vast datasets where human experts provide step-by-step solutions to complex problems. Instead, DeepSeek developed an autonomous learning system that uses reinforcement learning to refine the model’s reasoning skills through a system of rewards and penalties.

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

Researchers from Carnegie Mellon University, in an article accompanying the Nature paper, compared the process to a child learning to play a video game.

“As the child navigates their avatar through the game world, they learn through trial and error that some actions (such as collecting gold coins) earn points, whereas others (such as running into enemies) set their score back to zero. In a similar vein, DeepSeek-R1 was awarded a high score when it answered questions correctly and a low score when it gave wrong answers.”

This method was particularly effective for tasks in mathematics and programming, where answers can be definitively verified as right or wrong. The model would generate potential solutions, which were then evaluated by an automated scoring system. It would then iterate on its approach until it achieved the highest score, all without human intervention.

This efficient, self-directed process allowed the company to build a powerful AI system with a fraction of the investment required by its competitors.

Limitations and concerns about the model

While the reinforcement learning approach proved cost-effective, it also has some limitations. The model’s outputs often hide the underlying reasoning steps, making it difficult for a human to understand how it arrived at a conclusion. When asked to provide its reasoning, R1 generated extremely long and hard-to-read explanations—sometimes over 10,000 words—that switched between English and Chinese. The technique also struggled with tasks requiring nuance or subjectivity, where there is no single “correct” answer.

Beyond its technical limitations, the model’s development in China has raised concerns about potential government influence. A recent report from The Washington Post found that R1 exhibited biases in its outputs. Researchers discovered that the model would refuse to generate code with major security flaws when the prompts involved groups considered sensitive by Chinese authorities.

However, when asked to create code for entities like Tibet, Taiwan, or the Falun Gong religious movement, the model produced less secure versions with built-in vulnerabilities. This suggests that the model’s behavior may be shaped by the political priorities of the Chinese government.


Featured image credit

Tags: deepseekFeatured

Related Posts

EU launches €107M RAISE virtual institute to accelerate AI-driven science

EU launches €107M RAISE virtual institute to accelerate AI-driven science

November 4, 2025
Gemini now powers Google Translate’s “Advanced” mode

Gemini now powers Google Translate’s “Advanced” mode

November 4, 2025
Coca-Cola’s new AI-generated Christmas ad shows why generative video still struggles with realism

Coca-Cola’s new AI-generated Christmas ad shows why generative video still struggles with realism

November 4, 2025
Dia merges Arc’s fan-favorite tools with AI speed and simplicity

Dia merges Arc’s fan-favorite tools with AI speed and simplicity

November 4, 2025
Perplexity launches AI agent for natural-language patent research

Perplexity launches AI agent for natural-language patent research

November 3, 2025
Google pulls Gemma AI after senator says it fabricated a rape story

Google pulls Gemma AI after senator says it fabricated a rape story

November 3, 2025

LATEST NEWS

Tech News Today: AMD’s critical CPU flaw and iOS 26.1 offerings

EU launches €107M RAISE virtual institute to accelerate AI-driven science

AMD confirms critical RDSEED flaw in Zen 5 CPUs

Google rolls out redesigned Quick Share app for Windows

WhatsApp for Mac adds chat themes with 38 color options

Gemini now powers Google Translate’s “Advanced” mode

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.