Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

The story behind the new 10.44% efficient solar cell design

The key takeaway is that this breakthrough provides a pathway to creating more efficient and higher-performance solar cells, photocatalysts, and sensors.

byEmre Çıtak
July 15, 2025
in Research

A research team led by Professor WANG Mingtai at the Hefei Institutes of Physical Science, Chinese Academy of Sciences, has developed a refined method for growing titanium dioxide nanorod arrays (TiO₂-NA) with controllable spacing, maintaining constant individual rod size, and demonstrated its utility in high-performance solar cells.

The findings, published in the journal Small Methods, introduce a method for crafting nanostructures applicable across clean energy and optoelectronics. Single-crystalline TiO₂ nanorods are effective for light harvesting and charge conduction, making them suitable for solar cell, photocatalyst, and sensor applications. Conventional fabrication techniques for these nanorods typically link rod density, diameter, and length, meaning adjustments to one parameter affect the others, frequently impacting device efficiency.

The story behind the new 10.44% efficient solar cell design
Image: Hefei Institutes of Physical Science, Chinese Academy of Sciences

The research team addressed this limitation by extending the hydrolysis stage of a precursor film. This extension led to the assembly of longer “gel chains,” which in turn formed smaller anatase nanoparticles. When this anatase film underwent hydrothermal treatment, these nanoparticles converted in situ into rutile ones, functioning as seeds for subsequent nanorod growth. This controlled hydrolysis stage provides a mechanism to regulate rod density without altering the dimensions of the individual nanorods.

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.


This AI lab wants to automate scientific discovery


Using this approach, the team successfully produced TiO₂-NA films where the rod diameter and height remained consistent while the number of rods per unit area varied. When these films were integrated into low-temperature-processed CuInS₂ solar cells, they achieved power conversion efficiencies exceeding ten percent, reaching a peak efficiency of 10.44 percent. To explain the impact of spacing on performance, the team introduced a Volume-Surface-Density (VSD) model. This model elucidates how variations in rod density influence light trapping, charge separation, and carrier collection within the solar cell structure.

This research addresses previous limitations in regulating nanostructures by establishing a comprehensive system that links macro-process regulation with microstructure evolution and device performance optimization.


Featured image credit

Tags: solar energy

Related Posts

Forget seeing dark matter, it’s time to listen for it

Forget seeing dark matter, it’s time to listen for it

October 28, 2025
Google’s search business could lose  billion a year to ChatGPT

Google’s search business could lose $30 billion a year to ChatGPT

October 27, 2025
AI helps decode the epigenetic ‘off-switch’ in an ugly plant that lives for 3,000 years

AI helps decode the epigenetic ‘off-switch’ in an ugly plant that lives for 3,000 years

October 27, 2025
Researchers warn that LLMs can get “brain rot” too

Researchers warn that LLMs can get “brain rot” too

October 24, 2025
Cyberattacks are now killing patients not just crashing systems

Cyberattacks are now killing patients not just crashing systems

October 21, 2025
Gen Z workers are telling AI things they’ve never told a human

Gen Z workers are telling AI things they’ve never told a human

October 20, 2025

LATEST NEWS

Tech News Today: Nvidia builds the AI world while Adobe and Canva fight to rule it

Disney+ and Hulu streams now look sharper on Samsung TVs with HDR10+

Min Mode: Android 17 to have a special Always-On Display

Samsung Internet beta brings Galaxy AI to Windows PCs

Amazon cancels its Lord of the Rings MMO again

Windows 11 on Quest 3: Microsoft’s answer to Vision Pro

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.