Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Google DeepMind welcomes GraphCast weather forecast AI

Beyond its remarkable forecasting precision, GraphCast is adept at providing earlier warnings for severe weather events

byKerem Gülen
November 15, 2023
in Artificial Intelligence
Home News Artificial Intelligence

Google DeepMind’s latest innovation, GraphCast weather forecast AI, marks a significant advancement in weather prediction technology. The impact of weather is ubiquitous, influencing everything from daily wardrobe choices to energy production, and in extreme cases, creating storms that have profound effects on communities. As global weather patterns become increasingly volatile, the demand for swift and reliable weather forecasts has escalated.

A recent publication in Science introduces Google DeepMind’s GraphCast, an AI model that sets new standards in medium-range weather forecasting. GraphCast excels in predicting weather conditions up to 10 days in advance, surpassing the accuracy and speed of the established industry standard—the High Resolution Forecast (HRES), developed by the European Centre for Medium-Range Weather Forecasts (ECMWF).

Beyond its remarkable forecasting precision, GraphCast is adept at providing earlier warnings for severe weather events. It boasts of advanced capabilities in predicting cyclone paths, identifying atmospheric rivers that indicate potential flooding, and forecasting extreme temperature events, all of which are crucial for effective disaster preparedness and potentially life-saving interventions.

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

GraphCast represents a significant stride in applying AI to weather prediction, delivering forecasts that are not only more accurate but also more efficient. This breakthrough is pivotal for informed decision-making across various industries and societies. In a move to democratize AI-powered weather forecasting, Google DeepMind has open-sourced the GraphCast model code, enabling scientists and forecasters worldwide to enhance daily life for billions. Notably, weather agencies like ECMWF are already utilizing GraphCast, conducting live experiments with the model’s forecasts on their platform.

Google DeepMind’s GraphCast tackles the complexity of medium-range weather prediction

Weather forecasting stands as one of humanity’s most enduring and intricate scientific challenges. The ability to make medium-range predictions accurately is crucial for a myriad of sectors, from renewable energy generation to planning large-scale events. However, achieving accuracy and efficiency in these forecasts has always been a formidable task.

Traditionally, weather forecasts have relied on Numerical Weather Prediction (NWP). This method starts with meticulously crafted physics equations, subsequently converted into algorithms for supercomputer processing. While this approach has been a monumental achievement in science and engineering, crafting these equations and algorithms demands extensive expertise, time, and substantial computing resources to yield precise predictions.

Google DeepMind welcomes GraphCast weather forecast AI
Google DeepMind’s latest innovation, GraphCast weather forecast AI, marks a significant advancement in weather prediction technology (Image credit)

Deep learning tech is presenting an alternate route: leveraging data over physical equations to construct a weather forecasting system. Google DeepMind’s GraphCast weather forecast AI harnesses decades of historical weather data, learning the complex causal relationships that dictate the evolution of Earth’s weather. This method provides insights into weather patterns from the present extending into the future.

Notably, GraphCast doesn’t operate in isolation but works in synergy with traditional methods. GraphCast was trained using four decades of weather reanalysis data from ECMWF’s ERA5 dataset. This extensive collection, comprising historical weather observations like satellite imagery, radar, and readings from weather stations, utilizes traditional NWP models to create comprehensive records of global historical weather, filling in gaps where direct observations might be lacking.

How does GraphCast Weather forecast AI work?

The integration of machine learning and Graph Neural Networks (GNNs) in Google DeepMind’s GraphCast weather forecast AI marks a transformative approach in meteorological prediction. This innovative system specializes in processing spatially structured data, an essential factor for accurate weather modeling.

GraphCast weather forecast AI operates at an extraordinary resolution of 0.25 degrees longitude/latitude, translating to a detailed 28km x 28km grid at the equator. This high level of precision covers over a million grid points across the Earth’s surface. At these points, Google DeepMind’s model comprehensively predicts critical Earth-surface variables, including temperature and wind dynamics, alongside six atmospheric factors across 37 altitude levels, such as humidity and temperature variations.

Despite the intense computational demands during its training phase, the GraphCast weather forecast AI emerges as a highly efficient forecasting tool. The AI can complete 10-day weather forecasts in less than a minute when run on a single Google TPU v4 machine. This efficiency is a significant improvement over traditional methods like HRES, which require several hours and a vast array of supercomputers.

Google DeepMind welcomes GraphCast weather forecast AI
Google DeepMind’s GraphCast weather forecast AI now claims to be the world’s most precise system for 10-day global weather forecasting (Image credit)

In a rigorous performance test against the established HRES system, Google DeepMind’s GraphCast weather forecast AI demonstrated superior accuracy in over 90% of 1380 test variables and forecasting periods. The model’s performance is even more striking within the troposphere, the crucial atmospheric layer closest to Earth. Here, GraphCast outperformed HRES on 99.7% of test variables, showcasing its exceptional capability in predicting future weather conditions.

GraphCast Weather forecast AI requires just two data sets to function: the weather state from six hours prior and the current weather conditions. With this information, it accurately forecasts the upcoming six-hour weather scenario. This process can be sequentially extended in 6-hour increments, enabling Google DeepMind’s model to provide state-of-the-art forecasts up to a remarkable 10 days in advance.

Early detection of severe weather with GraphCast

Google DeepMind’s GraphCast weather forecast AI has demonstrated an exceptional ability to identify severe weather events earlier than conventional models, a feature not explicitly trained for. This capability exemplifies how GraphCast could significantly enhance preparedness, potentially saving lives and mitigating the impact of storms and extreme weather on communities.

By integrating a simple cyclone tracker into GraphCast forecasts, the model achieves superior accuracy in predicting cyclone movements compared to the HRES model. Notably, in a live demonstration on the ECMWF website, GraphCast accurately forecasted Hurricane Lee’s landfall in Nova Scotia nine days in advance, a prediction more precise and earlier than those made by traditional forecasting models.


DeepMind Sparrow is a new AGI that is safer and more precise


In the context of a warming world, predicting extreme temperatures is increasingly critical. Google DeepMind’s GraphCast excels in identifying potential heatwaves, anticipating when temperatures are likely to exceed historical highs for any given location. This predictive capability is vital for preparing for heatwaves, disruptive and dangerous events that are occurring with greater frequency.

Google DeepMind welcomes GraphCast weather forecast AI
GraphCast doesn’t operate in isolation but works in synergy with traditional methods (Image credit)

AI-powered weather forecasting

Google DeepMind’s GraphCast weather forecast AI now claims to be the world’s most precise system for 10-day global weather forecasting, offering unprecedented capabilities in predicting extreme weather events well into the future. As climate change continues to reshape weather patterns, GraphCast is poised to adapt and enhance its performance with the integration of increasingly high-quality data.


Featured image credit: Wolfgang Hasselmann/Unsplash

Tags: AIartificial intelligenceGoogle Deepmind

Related Posts

AI chatbots spread false info in 1 of 3 responses

AI chatbots spread false info in 1 of 3 responses

September 5, 2025
OpenAI to mass produce custom AI chip with Broadcom in 2025

OpenAI to mass produce custom AI chip with Broadcom in 2025

September 5, 2025
Deepmind finds RAG limit with fixed-size embeddings

Deepmind finds RAG limit with fixed-size embeddings

September 5, 2025
TCL QM9K integrates Gemini with presence detection

TCL QM9K integrates Gemini with presence detection

September 5, 2025
LunaLock ransomware hits artists/clients with AI training threat

LunaLock ransomware hits artists/clients with AI training threat

September 5, 2025
OpenAI: New ‘OpenAI for Science’ uses GPT-5

OpenAI: New ‘OpenAI for Science’ uses GPT-5

September 5, 2025

LATEST NEWS

Texas Attorney General files lawsuit over the PowerSchool data breach

iPhone 17 Pro is expected to arrive with 48mp telephoto, variable aperture expected

AI chatbots spread false info in 1 of 3 responses

OpenAI to mass produce custom AI chip with Broadcom in 2025

When two Mark Zuckerbergs collide

Deepmind finds RAG limit with fixed-size embeddings

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.