Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Resilient data stream processing begin with redundancy

byMike Rosam
August 10, 2022
in Contributors, Articles
Home Resources Contributors

Applications and products that react to events in real time, such as self-driving cars, heart monitors and flight bookings, require a reliable data flow to function correctly. Think about the disruptions caused when Facebook, AWS or Slack go down. Or take the example of an application designed to monitor electrocardiogram (ECG) signals for sudden changes that could signal a heart attack. An erroneous heart attack alert might signal if the data stream is interrupted. The same logic applies to products that use data to monitor machinery, optimize processes or detect behaviors associated with fraud or cyber attacks. These applications don’t just rely on data; they rely on real-time data streams. You can’t afford processing breakdowns when this much data is critical to your product and business.

Redundancy at every level for resiliency 

High-velocity data introduces new challenges to data processing. The faster the data is created, the more data that can be lost if that system fails, and the more challenging it becomes to process that data. We suggest stream processing in real time over batch for its high resiliency level. Brokers like Kafka, rather than traditional databases, store data in memory using multiple nodes to provide a distributed persistence layer for resiliency. Installing a data processing layer with Kubernetes ensures data is processed without duplicating or missing a single data point. Redundancy throughout the system prevents data from being lost while keeping it moving quickly.

Control puts stream processing (and redundancy) to the test

Let’s look at Control, a telemetry company specializing in race car data connectivity. When a car zooms around the track, every millisecond counts. Race cars already contain hundreds of sensors that enable engineers to monitor car parts and optimize performance. Along with sensors,

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

Control provides three in-car modems that ensure data flows seamlessly from the sensors on the car to remote race engineers. These modems automatically switch between cell towers during the race to optimize data flow. They give racers an edge over competitors relying on batch processing due to their consistent connectivity, allowing for sophisticated machine learning models to act in real time. If one of the modems breaks, the race isn’t lost, thanks to their number.

Microservices create resilient systems for streaming and using streams of data

Control’s solution involved Kafka, Kubernetes, ML models, a series of devices and a collection of other developer tools to run its streaming solution. The Quix platform helps Control manage complex integrations and individual services so that Control and other users can focus on building data products that work every time with no interruptions.

Tags: redundancysurveillance

Related Posts

When Regulation Embraces Innovation: Xenco Medical Founder and CEO Jason Haider Discusses the Upcoming 2026 CMS Transforming Episode Accountability Model

When Regulation Embraces Innovation: Xenco Medical Founder and CEO Jason Haider Discusses the Upcoming 2026 CMS Transforming Episode Accountability Model

August 26, 2025
DeFAI and the Future of AI Agents

DeFAI and the Future of AI Agents

July 26, 2025
Unifying the fragmented AI ecosystem: A new paradigm for generative AI workflows

Unifying the fragmented AI ecosystem: A new paradigm for generative AI workflows

July 21, 2025

How to plan for technical debt before it buries you

July 21, 2025
Optimizing performance for a global user base

Optimizing performance for a global user base

July 17, 2025
How the right FPS mouse can make or break your game (or workflow)

How the right FPS mouse can make or break your game (or workflow)

July 14, 2025
Please login to join discussion

LATEST NEWS

xAI sues former engineer to stop him from joining OpenAI, alleging theft of Grok trade secrets

Psychopathia Machinalis and the path to “Artificial Sanity”

GPT-4o Mini is fooled by psychology tactics

AI reveals what doctors cannot see in coma patients

Asian banks fight fraud with AI, ISO 20022

Android 16 Pixel bug silences notifications

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.