Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Google releases TF-GNN for creating graph neural networks in TensorFlow

by Kyle Wiggers
November 19, 2021
in Machine Learning, Artificial Intelligence, Contributors
Home Topics Data Science Machine Learning
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

Google today released TensorFlow Graph Neural Networks (TF-GNN) in alpha, a library designed to make it easier to work with graph-structured data using TensorFlow, its machine learning framework. Used in production at Google for spam and anomaly detection, traffic estimation, and YouTube content labeling, Google says that TF-GNN is designed to “encourage collaborations with researchers in industry.”

Graphs are a set of objects, places, or people and the connections between them. A graph represents the relations (edges) between a collection of entities (nodes or vertices), all of which can store data. Directionality can be ascribed to the edges to describe information, traffic flow, and more.

More often than not, the data in machine learning problems is structured or relational and thus can be described with a graph. Fundamental research on GNNs is decades old, but recent advances have led to great achievements in many domains, like modeling the transition of glass from a liquid to a solid and predicting pedestrian, cyclist, and driver behavior on the road.TF-GNN

Above: Graphs can model the relationships between many different types of data, including web pages (left), social connections (center), or molecules (right).Image Credit: Google

Indeed, GNNs can be used to answer questions about multiple characteristics of graphs. By working at the graph level, they can try to predict aspects of the entire graph, for example identifying the presence of certain “shapes” like circles in a graph that might represent close social relationships. GNNs can also be used on node-level tasks to classify the nodes of a graph or at the edge level to discover connections between entities.


Join the Partisia Blockchain Hackathon, design the future, gain new skills, and win!


TensorFlow Graph Neural Networks: TF-GNN

TF-GNN provides building blocks for implementing GNN models in TensorFlow. Beyond the modeling APIs, the library also delivers tooling around the task of working with graph data, including a data-handling pipeline and example models.

Also included with TF-GNN is an API to create GNN models that can be composed with other types of AI models. In addition to this, TF-GNN ships with a schema to declare the topology of a graph (and tools to validate it), helping to describe the shape of training data.

“Graphs are all around us, in the real world and in our engineered systems … In particular, given the myriad types of data at Google, our library was designed with heterogeneous graphs in mind,” Google’s Sibon Li, Jan Pfeifer, Bryan Perozzi, and Douglas Yarrington wrote in the blog post introducing TF-GNN.

TF-GNN adds to Google’s growing collection of TensorFlow libraries, which spans TensorFlow Privacy, TensorFlow Federated, and TensorFlow.Text. More recently, the company open-sourced TensorFlow Similarity, which trains models that search for related items — for example, finding similar-looking clothes and identifying currently playing songs.

This article originally appeared on VentureBeat and is reproduced with permission.

Tags: AIartificial intelligenceGNNGooglegraph neural networksMachine LearningTensorFlow

Related Posts

AI Asmongold video: In the Athene AI Show, a Twitch streamer's funny deepfake revealed and people love it. So how did this happen? Keep reading and find out.

AI Asmongold may have been one of the very first examples of AI streamers

February 6, 2023
Google starts testing its ChatGPT rival AI chatbot called Apprentice Bard

Google starts testing its ChatGPT rival AI chatbot called Apprentice Bard

February 3, 2023
Artificial intelligence in education: Examples

How AI improves education with personalized learning at scale and other new capabilities

February 3, 2023
What is ChatGPT Plus, and how to get it? Learn its features, price, and how to join ChatGPT Plus waitlist. Is it worth it? Keep reading and find out

ChatGPT Plus: How does the paid version work?

February 2, 2023
AI Text Classifier: OpenAI's ChatGPT detector can distinguishes AI-generated text

AI Text Classifier: OpenAI’s ChatGPT detector indicates AI-generated text

February 2, 2023
BuzzFeed ChatGPT integration: Buzzfeed stock surges in enthusiasm over OpenAI

BuzzFeed ChatGPT integration: Buzzfeed stock surges after the OpenAI deal

February 2, 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

LATEST ARTICLES

AI Asmongold may have been one of the very first examples of AI streamers

Mastering the art of efficiency through business process transformation

Google starts testing its ChatGPT rival AI chatbot called Apprentice Bard

How AI improves education with personalized learning at scale and other new capabilities

Cyberpsychology: The psychological underpinnings of cybersecurity risks

ChatGPT Plus: How does the paid version work?

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy
  • Partnership
  • Writers wanted

Follow Us

  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.