Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

“I strongly prefer looking forward. There’s so much to build!”: An Interview With AI Researcher Trent McConaghy

byPeadar Coyle
July 15, 2015
in Artificial Intelligence, Conversations
Home News Artificial Intelligence

Trent McConaghy has been doing AI and ML research since the mid 90s. He co-founded ascribe GmbH, which enables copyright protection via internet-scale ML and the blockchain. Before that, he co-founded Solido where he applied ML to circuit design; the majority of big semis now use Solido. Before that, he co-founded ADA also doing ML + circuits; it was acquired in 2004. Before that he did ML research at the Canadian Department of Defense. He has written two books and 50 papers+patents on ML. He co-organizes the Berlin ML meetup. He keynoted Data Science Day Berlin 2014, PyData Beriln 2015, and more. He holds a PhD in ML from KU Leuven, Belgium.

Follow Peadar’s series of interviews with data scientists here.


At PyData in Berlin I chaired a panel – one of the guests was Trent McConaghy and so I reached out to him, to hear his views about analytics. I liked his views on shipping it, and the challenges he’s run into in his own world.

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

What project have you worked on do you wish you could go back to, and do better?

Before I answer this I must say: I strongly prefer looking forward. There’s so much to build!
I’ve made many mistakes! One is having rose-colored glasses for criteria that ultimately mattered little. For example, for my first startup, I hired a professor who’d written 100+ papers, and textbooks. Sounds great, right? Well, he’d optimized his way of thinking for academia, but was not terribly effective on the novel ML problems in my startup. It was no fun for anyone. We had to let him go.

What advice do you have to younger analytics professionals and in particular PhD students in the Sciences?

Do something that that you are passionate about, and that matters to the future. It starts with asking interesting scientific questions, and ends (ideally) with results that make a meaningful impact on the world’s knowledge.

What do you wish you knew earlier about being a data scientist?

As an AI researcher and an engineer: one thing that I didn’t know, but served me well because I did it anyway, was voracious reading of the literature. IEEE Transactions for breakfast:) That foundation has served me well my whole career.

How do you respond when you hear the phrase ‘big data’?

Marketing alert!!

That said: I like how unreasonably effective large amounts of data can be. And that it’s shifted some of focus away from algorithmic development on toy problems.

What is the most exciting thing about your field?

AI as a field has been around since the 50s. Some of the original aims of AI are still the most exciting! Getting computers to do tasks in superhuman fashions is amazing. These days it’s routine in narrow settings. When the world hits AI that can perform at the cognitive levels of humans or beyond, it changes everything. Wow! It’s my hope to help shepherd those changes in a way that is not catastrophic for humanity.

How do you go about framing a data problem – in particular, how do you avoid spending too long, how do you manage expectations etc. How do you know what is good enough?

I follow steps, along the lines of the following.

  • Write down goals, what question(s) I’m trying to answer. Give yourself a time limit.
  • Get benchmark data, and measure(s) of quality. Draw mockups of graphs I might plot.
  • Test against dumbest possible initial off-the-shelf algorithm and problem framing (including where I get the data)
  • Is it good enough compared to the goals? Great, stop! (Yes, linear regression will solve some problems:)
  • Try the next highest bang-for-the-buck algorithm & problem framing. Ideally, it’s off the shelf too. Benchmark / plot / etc. Repeat. Stop as soon as successful, or when time limit is hit.
  • Ship!

 


unnamedPeadar Coyle is a Data Analytics Professional based in Luxembourg. He has helped companies solve problems using data relating to Business Process Optimization, Supply Chain Management, Air Traffic Data Analysis, Data Product Architecture and in Commercial Sales teams. He is always excited to evangelize about ‘Big Data’ and the ‘Data Mentality’, which comes from his experience as a Mathematics teacher and his Masters studies in Mathematics and Statistics. His recent speaking engagements include PyCon Sei in Florence and he will soon be speaking at PyData in Berlin and London. His expertise includes Bayesian Statistics, Optimization, Statistical Modelling and Data Products


(Image Credit: Tris Linnell / Turing Bombe / CC BY SA 2.0 )

Tags: BlockchainInterview Peadar Coyle

Related Posts

Zoom announces AI Companion 3.0 at Zoomtopia

Zoom announces AI Companion 3.0 at Zoomtopia

September 19, 2025
Google Cloud adds Lovable and Windsurf as AI coding customers

Google Cloud adds Lovable and Windsurf as AI coding customers

September 19, 2025
Elon Musk’s xAI chatbot Grok exposed hundreds of thousands of private user conversations

Elon Musk’s xAI chatbot Grok exposed hundreds of thousands of private user conversations

September 19, 2025
The data leader’s new mandate with Oleksandr Khirnyi

The data leader’s new mandate with Oleksandr Khirnyi

September 19, 2025
DeepSeek releases R1 model trained for 4,000 on 512 H800 GPUs

DeepSeek releases R1 model trained for $294,000 on 512 H800 GPUs

September 19, 2025
Google’s Gemini AI achieves gold medal in prestigious ICPC coding competition, outperforming most human teams

Google’s Gemini AI achieves gold medal in prestigious ICPC coding competition, outperforming most human teams

September 18, 2025
Please login to join discussion

LATEST NEWS

Zoom announces AI Companion 3.0 at Zoomtopia

Google Cloud adds Lovable and Windsurf as AI coding customers

Radware tricks ChatGPT’s Deep Research into Gmail data leak

Elon Musk’s xAI chatbot Grok exposed hundreds of thousands of private user conversations

Roblox game Steal a Brainrot removes AI-generated character, sparking fan backlash and a debate over copyright

DeepSeek releases R1 model trained for $294,000 on 512 H800 GPUs

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.