Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

R vs. Python: The Data Science Wars

byJuan Salazar
May 13, 2015
in Articles, infographics
Home Resources Articles

Choosing the right language for data analysis can be almost as complicated as actually learning the language. For many reasons, R and Python are two of the most popular: R is often praised for its great features for data visualization, as it was developed with statisticians in mind; plenty of programmers love multi-purpose Python for its so-simple-a-child-could-do-it syntax.

Why not just learn both?

The fact is, your time is limited. As data scientist and Dataconomy contributor Joshua Ebner says: ‘Learning a new programming language is a large investment in your time, so you need to be strategic about which one you select. The reason to focus on one programming language is because you need to focus much more on process and technique, not syntax. You need to learn how to think about data and how to solve problems using the tools of data science’.

How do these two languages relate to one another? What are the strengths of R over Python, and vice versa? Just like there’s no single best tool in a toolbox, there’s no single programming language that’s perfect for every data problem you want to solve. However, you need to be able to devote a significant amount of your time to truly master one tool. Spending 100 hours on Python or on R will yield considerably better results than splitting your time on ten different tools. In the end, your time ROI will be higher by concentrating your efforts.

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

The Data Science Wars

Data science online learning platform DataCamp‘s infographic provides a basic comparison between these two programming languages from a data science and statistics perspective, perfect for aspiring data scientists looking for the right language to start with.

 

R vs. Python: The Data Science Wars

 

And The Winner Is…

Even though the infographic suggests R and Python are equally good for budding data scientists making their first steps on the field, we believe R is the winner, at least for data science beginners, who are moving on from spreadsheets into programming languages. It is not only the most widely used language among data scientists, but it is also popular in academia, and in business. R also offers a simple approach to learning the key skills of data science: data manipulation, data visualization, and machine learning. After mastering the fundamentals data science in R, you’ll probably (want to) learn other languages to solve specific problems.

(Image credit: Michael Doherty)

 

Tags: data scienceinfographicsProgramming LanguagespythonR

Related Posts

When Regulation Embraces Innovation: Xenco Medical Founder and CEO Jason Haider Discusses the Upcoming 2026 CMS Transforming Episode Accountability Model

When Regulation Embraces Innovation: Xenco Medical Founder and CEO Jason Haider Discusses the Upcoming 2026 CMS Transforming Episode Accountability Model

August 26, 2025
DeFAI and the Future of AI Agents

DeFAI and the Future of AI Agents

July 26, 2025
Unifying the fragmented AI ecosystem: A new paradigm for generative AI workflows

Unifying the fragmented AI ecosystem: A new paradigm for generative AI workflows

July 21, 2025

How to plan for technical debt before it buries you

July 21, 2025
Optimizing performance for a global user base

Optimizing performance for a global user base

July 17, 2025
How the right FPS mouse can make or break your game (or workflow)

How the right FPS mouse can make or break your game (or workflow)

July 14, 2025
Please login to join discussion

LATEST NEWS

AI agents lead to 4,000 job cuts in Salesforce’s support division, CEO says

How synthetic data is reshaping AI model training

The future of free online engineering tools: Trends and innovations

Xbox rolls out cross-device play history feature globally

MathGPT.ai expands to 50+ colleges with “cheat-proof” AI tutor

Windows 11 OOBE update installs start September 2025

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.