Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • AI toolsNEW
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • AI toolsNEW
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

LEVAN: Learning Everything About Anything

byEileen McNulty
May 26, 2014
in News
Home News
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

Researchers from the Allen Institute of Artificial Intelligence and the University of Washington are aiming to take machine learning to the next level with system LEVAN. Rather than learning a specific concept, LEVAN aims to Learn EVerything about ANything (hence the name). Unlike most machine learning projects, which learn either in a non-supervised or human-supervised manner, LEVAN is ‘webly supervised’, teaching itself about concepts using only the internet.

The question that sparked LEVAN was “How can we learn a model for any concept that exhaustively covers all ts appearance variations, while requiring minimal or no supervision for compiling the vocabulary of visual variance, gathering the training images and annotations, and learning the models?”, according to the creators’ research paper. What they ended up constructing was LEVAN, ” a fully-automated approach for learning extensive models for a wide range of variations (e.g. actions, interactions, attributes and beyond) within any concept”.

LEVAN works by using Google Books Ngrams to find associated terms around a concept, prune the concepts (by grouping together similar concepts and omitting ‘non-salient’ terms), and then searching for these concepts in image aggregators such as Google Images, Flickr and Bing. For example, on the project website, LEVAN has found out ‘boiled food’, ‘cantonese food’ and ‘food courts’ are all subcategories around the term ‘food’, and grouped together the similar categories of ‘boiled food’ and ‘soft food’.
LEVAN’s creators have suggested potential future applications, such as “co-reference resolution” (finding out which words refer to exactly the same thing, such as ‘Mahatma Gandhi’ and ‘Mohandas Gandhi’) and “temporal evolution of concepts” (distinguishing ‘1900 car’ from ‘1950 car’). So far, LEVAN has identified 50 different concepts and more than 50,000 sub-concepts, and tagged over 10 million images. You can try the system out for yourself on the project website.

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

Read more here.

Tags: NewsUniversity of Washington

Related Posts

Dell fixes the XPS: Physical keys return in new 14 and 16 models

Dell fixes the XPS: Physical keys return in new 14 and 16 models

January 13, 2026
Zuckerberg launches Meta Compute to build massive AI energy grid

Zuckerberg launches Meta Compute to build massive AI energy grid

January 13, 2026
Official: Google Gemini will power Apple Intelligence and Siri

Official: Google Gemini will power Apple Intelligence and Siri

January 13, 2026
Amazon: 97% of our devices are ready for Alexa+

Amazon: 97% of our devices are ready for Alexa+

January 13, 2026
Anthropic’s Cowork brings developer-grade AI agents to non-coders

Anthropic’s Cowork brings developer-grade AI agents to non-coders

January 13, 2026
Xiaomi eyes total independence with new chip and OS

Xiaomi eyes total independence with new chip and OS

January 12, 2026
Please login to join discussion

LATEST NEWS

Dell fixes the XPS: Physical keys return in new 14 and 16 models

Zuckerberg launches Meta Compute to build massive AI energy grid

Official: Google Gemini will power Apple Intelligence and Siri

Amazon: 97% of our devices are ready for Alexa+

Anthropic’s Cowork brings developer-grade AI agents to non-coders

Xiaomi eyes total independence with new chip and OS

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • AI tools
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.