Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

SIMA has the potential to save the humanity by… playing video games?

SIMA, developed by Google DeepMind as part of their generalist AI agent research, directs artificial intelligence research in the virtual world provided by video games

byEmre Çıtak
March 13, 2024
in Artificial Intelligence
Home News Artificial Intelligence

Google DeepMind’s recent breakthrough with SIMA (Self-Instructing Multimodal Agent) shines a spotlight on the rapid progress in making generalist AI agents, specifically designed for 3D virtual environments, a reality.

This progress carries transformative potential, not just for the gaming industry, but for the way we interact with virtual spaces across a broad spectrum of applications.

With enhanced capabilities in understanding instructions, adapting to new tasks, and reasoning within the constraints of virtual worlds, SIMA-like agents offer the potential to reshape several key areas.

SIMA’s massive success

DeepMind’s latest innovation is SIMA, which stands for Scalable Instructable Multiworld Agent. Unlike previous AI focused on mastering a single game, SIMA is a generalist AI.

SIMA isn’t limited to pixels on the screen. It can process both visual information (what it sees in the game) and natural language instructions (what a human tells it to do). This multimodal learning allows for a more nuanced understanding of the game world.

A generalist AI agent strives to be a versatile tool within virtual environments. Unlike traditional AI focuses on a single task, a generalist AI aims to learn and perform a wide range of actions. This allows it to adapt to new situations and environments it hasn’t been specifically trained for.

SIMA isn’t trained on just one game. DeepMind collaborated with several game developers, exposing SIMA to a variety of titles like No Man’s Sky and Teardown. This diversity strengthens its ability to adapt to new environments.

SIMA doesn’t need to be spoon-fed every rule. By following instructions, it can learn new skills within a game, like navigating a new area, crafting an item, or using in-game menus. This makes it far more versatile than traditional AI agents.

https://deepmind.google/api/blob/website/media/Fig3_Sima.mp4

Don’t be fooled by the lack of focus on achieving top scores. While impressive, that’s not the main objective.

SIMA’s true success lies in its ability to understand and act on human instructions within a game environment. This research signifies a HUGE step has been taken to create an AI that can be helpful to us in the real world.

Some of the games where Google DeepMind runs this groundbreaking AI model are:

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

  • Goat Simulator 3
  • Hydroneer
  • No Man’s Sky
  • Satisfactory
  • Teardown
  • Valheim
  • Wobbly Life

Apart from all these games, the Google DeepMind team also tested SIMA’s capabilities in realistic simulations created by them called: “Research Environments“. These environments, consisting of Construction Lab, Playhouse, ProcTHOR, and WorldLab, simulate many areas where artificial intelligence is considered to be integrated in the near future.

The magic behind SIMA

Multimodal input processing

SIMA utilizes large language models (LLMs), likely based on the Transformer architecture, to process and understand natural language instructions given by a user. LLMs excel at handling sequential data like text, making them well-suited for this task. To make sense of its surroundings, SIMA employs convolutional neural networks (CNNs) to process visual input from the 3D environment.

CNNs are exceptionally good at extracting spatial features and patterns from images or video streams. SIMA likely uses multiple CNNs to create different levels of representation within the visual input for comprehensive understanding.

Self-instruction

One of the key innovations underlying SIMA is its ability to break down complex instructions into a sequence of simpler sub-tasks. This is likely achieved through a combination of natural language processing (to analyze the instructions) and hierarchical reinforcement learning (RL).

Hierarchical RL allows agents to learn complex behaviors by building upon sequences of lower-level actions.

Additionally, SIMA can generate its own training data and targets by observing its actions within the environment and the resulting changes. This self-supervision technique is crucial for enabling continuous learning and adaptation in new environments, giving it flexibility.

Google DeepMind SIMA generalist AI
Google DeepMind’s generalist AI, SIMA, utilizes multiple techniques used in complex machine learning and artificial intelligence algorithms (Image credit)

Zero-shot generalization

SIMA’s impressive ability to perform new tasks without explicit training likely stems from extensive pre-training on a massive dataset of diverse 3D environments and associated instructions. This pre-training allows the model to build a rich internal representation of virtual worlds and common instructions, enabling it to generalize knowledge.

It’s probable that a meta-learning approach is used during pre-training, encouraging SIMA to develop a strategy for “learning how to learn“.

This allows the agent to acquire new skills quickly within unseen environments.

You may learn more about Google DeepMind’s work on generalist AI agent training using games from their research paper.

Learn from games to shine in the real world

Believe it or not, SIMA marks a turning point in the development of AI.

Video games offer the ideal training ground for AI because they are dynamic, self-contained worlds with clear goals, rules, and feedback mechanisms.

Within these virtual spaces, AI agents can experiment, make mistakes, and learn from their successes and failures – all without the risks or limitations of the real world. As SIMA explores more intricate game worlds and its underlying models become more powerful, it develops the ability to adapt, understand instructions, and strategize to achieve goals.

These skills, honed in the safe sandbox of a game, translate into a versatile and capable AI that can potentially navigate the complexities of our real world.

This is just the beginning of what’s possible when AI learns through play.

Actually, the potential of AI to address real-world challenges becomes clear when we examine the prompts used by Google DeepMind in various games.

Google DeepMind SIMA generalist AI
SIMA’s prompt examples and the actions it performs in games are actually the basis of a research for the integration of AI technologies into real life (Image credit)

To give a few examples:

The “Pick up iron ore” prompt in Satisfactory hints at the potential for AI to improve safety in hazardous industries like mining. The Bureau of Labor Statistics reports a distressing rise in fatal mining injuries, with a 21.8% increase from 2020 to 2021. Imagine the lives that could be saved if AI-powered robots, less prone to human error or fatigue, were to handle dangerous mining tasks.

In the survival game Valheim, the “Find water” prompt highlights the power of AI in addressing vital issues like water scarcity. The World Bank reports that about 226 million people in Eastern and Southern Africa did not have access to basic water services, and 381 million people lacked access to basic sanitation services.

Another robot that can carry out water research on the natural water source in the region without any interruption can touch the lives of billions of people.

Although artificial intelligence seems to be identified with image generation and incessant chatbots nowadays, believe us, it is much more than that, and studies like these hold immense potential for a better future for all.


Featured image credit: Freepik.

Tags: FeaturedGoogle Deepmind

Related Posts

AI chatbots spread false info in 1 of 3 responses

AI chatbots spread false info in 1 of 3 responses

September 5, 2025
OpenAI to mass produce custom AI chip with Broadcom in 2025

OpenAI to mass produce custom AI chip with Broadcom in 2025

September 5, 2025
Deepmind finds RAG limit with fixed-size embeddings

Deepmind finds RAG limit with fixed-size embeddings

September 5, 2025
TCL QM9K integrates Gemini with presence detection

TCL QM9K integrates Gemini with presence detection

September 5, 2025
LunaLock ransomware hits artists/clients with AI training threat

LunaLock ransomware hits artists/clients with AI training threat

September 5, 2025
OpenAI: New ‘OpenAI for Science’ uses GPT-5

OpenAI: New ‘OpenAI for Science’ uses GPT-5

September 5, 2025

LATEST NEWS

Texas Attorney General files lawsuit over the PowerSchool data breach

iPhone 17 Pro is expected to arrive with 48mp telephoto, variable aperture expected

AI chatbots spread false info in 1 of 3 responses

OpenAI to mass produce custom AI chip with Broadcom in 2025

When two Mark Zuckerbergs collide

Deepmind finds RAG limit with fixed-size embeddings

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.