Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Researchers developed an algorithmic planner for allocating tasks to humans and robots

byKerem Gülen
June 6, 2022
in News, Artificial Intelligence
Home News

An algorithmic planner developed by a team at Carnegie Mellon University’s Robotics Institute (RI) can aid in delegating tasks to humans and robots. The planner, named “Act, Delegate, or Learn,” considers a list of activities before determining the best method to distribute them.

The algorithmic planner can aid in delegating tasks to humans and robots

The paper is titled “Synergistic Scheduling of Learning and Allocation of Tasks in Human-Robot Teams,” It was presented at the International Conference on Robotics and Automation in Philadelphia. The researchers are focused on three main questions in the study:

  • When should a robot act to complete a task?
  • When should a task be delegated to a human?
  • When should a robot learn a new task?
An algorithmic planner developed by a team at Carnegie Mellon University's Robotics Institute (RI) can aid in delegating tasks to humans and robots.
An algorithmic planner developed by a team at Carnegie Mellon University’s Robotics Institute (RI) can aid in delegating tasks to humans and robots.

“There are costs associated with the decisions made, such as the time it takes a human to complete a task or teach a robot to complete a task and the cost of a robot failing at a task. Given all those costs, our system will give you the optimal division of labor,” said Shivam Vats, the lead author and a Ph.D. student in the RI.

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

The work may be useful in manufacturing and assembly facilities and other settings where humans and robots collaborate to finish numerous duties. Using a model where people and machines put blocks into a peg board and stack parts of various forms and sizes manufactured of Lego bricks, the algorithmic planner was tested, as can be seen below.

An algorithmic planner developed by a team at Carnegie Mellon University's Robotics Institute (RI) can aid in delegating tasks to humans and robots.
The work may be useful in manufacturing and assembly facilities.

“This planning problem results in a search tree that grows exponentially with n – making standard graph search algorithms intractable. We address this by converting the problem into a mixed-integer program that can be solved efficiently using off-the-shelf solvers with bounds on solution quality. To predict the benefit of learning, we use an approximate simulation model of the tasks to train a precondition model parameterized by the training task. Finally, we evaluate our approach on peg insertion and Lego stacking tasks- both in simulation and real-world, showing substantial savings in human effort,” explained the authors.

Delegating and dividing labor, even when robots are on the team, is not new. But this study is also one of the first to include robot learning in its reasoning.

An algorithmic planner developed by a team at Carnegie Mellon University's Robotics Institute (RI) can aid in delegating tasks to humans and robots.
The algorithmic planner transforms the issue into a mixed-integer program that may be efficiently handled by off-the-shelf software.

“Robots aren’t static anymore. They can be improved, and they can be taught,” said Vats.

In manufacturing, a human may manually operate a robotic arm to instruct the machine on how to accomplish a procedure. Teaching a robot takes time and, as a result, has an expensive up-front price tag. However, if the robot can learn a new skill and predict what other activities it could execute after learning one, it may be advantageous in the long run. The ability of a robot to anticipate what additional jobs it might do once it learns a new skill is part of its complexity. If you are new to artificial intelligence and machine learning in the industry, check out our article entitled AI in manufacturing: The future of Industry 4.0.

Given this data, the algorithmic planner transforms the issue into a mixed-integer program – an optimization technique frequently used in scheduling, production planning, and network design – that may be efficiently handled by off-the-shelf software. In all cases, the algorithmic planner outperformed traditional models and lowered task completion costs by 10% to 15%. The efficiency that artificial intelligence brings to the table is undeniable. In today’s world, AI drives the Industry 4.0 transformation, and every expert should keep an eye open.

An algorithmic planner developed by a team at Carnegie Mellon University's Robotics Institute (RI) can aid in delegating tasks to humans and robots.
The algorithmic planner outperformed traditional models and lowered task completion costs by 10% to 15%.

Vats presented his paper “Synchronous Scheduling of Learning and Allocation of Tasks in Human-Robot Teams,” which was nominated for the outstanding interaction paper award at the International Conference on Robotics and Automation in Philadelphia. Maxim Likhachev, an associate professor from RI, and Oliver Kroemer, an assistant professor from RI, were among the study’s authors. The study was conducted with assistance from the Office of Naval Research and the Army Research Laboratory.

Tags: AIMachine Learningroboticsrobots

Related Posts

xAI sues former engineer to stop him from joining OpenAI, alleging theft of Grok trade secrets

xAI sues former engineer to stop him from joining OpenAI, alleging theft of Grok trade secrets

September 2, 2025
Psychopathia Machinalis and the path to “Artificial Sanity”

Psychopathia Machinalis and the path to “Artificial Sanity”

September 1, 2025
GPT-4o Mini is fooled by psychology tactics

GPT-4o Mini is fooled by psychology tactics

September 1, 2025
AI reveals what doctors cannot see in coma patients

AI reveals what doctors cannot see in coma patients

September 1, 2025
Asian banks fight fraud with AI, ISO 20022

Asian banks fight fraud with AI, ISO 20022

September 1, 2025
Android 16 Pixel bug silences notifications

Android 16 Pixel bug silences notifications

September 1, 2025
Please login to join discussion

LATEST NEWS

xAI sues former engineer to stop him from joining OpenAI, alleging theft of Grok trade secrets

Psychopathia Machinalis and the path to “Artificial Sanity”

GPT-4o Mini is fooled by psychology tactics

AI reveals what doctors cannot see in coma patients

Asian banks fight fraud with AI, ISO 20022

Android 16 Pixel bug silences notifications

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Glossary
    • Whitepapers
  • Newsletter
  • + More
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.