Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
  • AI
  • Tech
  • Cybersecurity
  • Finance
  • DeFi & Blockchain
  • Startups
  • Gaming
Dataconomy
  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

A Whole New World for Data Teams

byHarry Glaser
February 7, 2018
in Articles
Home Resources Articles
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

Among the many things I loved about the latest Star Wars movie was our introduction to the unexpected rise of Rose Tico – a humble mechanic who gets thrust into the heart of the action following a chance encounter with Finn. By the end of the movie, she’s flying ski-speeders in one of the film’s most critical battles. As the going gets tough, Rose’s role expands and gets more complex and demanding, but she never wavers from fighting to get the job done.

Many data professionals can certainly relate to Rose’s character. The role of data analysts and data teams has become unrecognizable compared to what it was five years ago. As data proliferation increases in both size and complexity, the responsibility for utilizing it is moving from dedicated specialists – including data integrators, scientists, modelers and business analysts – to cross-functional data teams that blend all of their skills together. Today’s data professionals can no longer get away with delivering basic business metrics and performance indicators. They now have to work collaboratively to create sophisticated analyses that allow a business to predict the future success of the business.

The transformation of data teams

Traditionally, the role of prediction has fallen to the elite cadre of data scientists. A business analyst might have focused on measuring churn, but rarely would have been tasked with predicting which companies might churn in the future. Other sophisticated tasks, such as natural language processing or model construction, have been reserved for a fairly elite group of data professionals with strong engineering backgrounds.

Stay Ahead of the Curve!

Don't miss out on the latest insights, trends, and analysis in the world of data, technology, and startups. Subscribe to our newsletter and get exclusive content delivered straight to your inbox.

Today, however, market pressure is forcing these forward-looking analyses to become a regular part of business operations, which means every member of the data team is expected to acquire these essential skills. Data manipulation languages like R are rapidly emerging, and a quick glance at Stack Overflow’s survey of the most popular developer languages in 2017 shows Python – a language often used for advanced analysis – among the most used languages. Additionally, job listings for data teams have a very different set of skills required than they did just a few years ago. Like Rose, each member of today’s data teams must adapt to new expectations and build their expertise to match what’s needed for their role…or risk getting killed by the First Order.

Data and business: Apply it or die

As if learning new languages and tools wasn’t enough of a challenge, data teams must now consider the visualization of their results more than ever before. Until recently, machine learning models were consigned to the backend of a server, facing lower expectations for visualizing the results for business use.

Now, insights created from machine learning are designed for consumption by business leaders and operations teams, so they have to be clearly and creatively presented. The result has been a need to develop predictive tools that combine the power of Python and R with the reporting and dashboarding capabilities that analysts’ stakeholders are familiar with.

These changes are placing big demands on the data community – if you’re not using modern data analysis tools for predictive analytics and folding them into your regular business metrics, you are going to get left behind. Companies that can analyze churn, retention and social media trends – and how each will change over time – will have huge advantages over companies who ignore these crucial metrics.

Getting the job done

As big of a challenge as this has become, it’s an exciting time for data teams to make significant impacts on business results. Whether it’s professional trainings, acquiring new skills, working with new tools or hiring more resources, data teams must adapt and do what it takes to get ahead. To my friends in the data community: may the force be with you.

Like this article? Subscribe to our weekly newsletter to never miss out!

Tags: surveillance

Related Posts

“The LLM productivity cliff”: New research offering a different lens on AI productivity

“The LLM productivity cliff”: New research offering a different lens on AI productivity

December 11, 2025
Xenco Medical Wins 2025 World Economic Forum Award for Excellence in Governance and Leadership for Global Challenges

Xenco Medical Wins 2025 World Economic Forum Award for Excellence in Governance and Leadership for Global Challenges

December 4, 2025
How Magicrypto Helps U.S. Investors Earn Stable and Safe Passive Crypto Income

How Magicrypto Helps U.S. Investors Earn Stable and Safe Passive Crypto Income

November 13, 2025
Wysh Puts Free Life Insurance on Stablecoin Accounts

Wysh Puts Free Life Insurance on Stablecoin Accounts

November 6, 2025
Demystifying LLMs: How modern AI transforms language into knowledge

Demystifying LLMs: How modern AI transforms language into knowledge

November 3, 2025
Inside the AWS outage: How one failure rippled across the global economy

Inside the AWS outage: How one failure rippled across the global economy

October 21, 2025
Please login to join discussion

LATEST NEWS

GPT-5.2: OpenAI officially launches its flagship model

Google launches Android Emergency Live Video in US, Germany, Mexico

Instagram launches Your Algorithm for Reels

DOE announces $320M for Genesis Mission AI initiative

Xbox year in review 2025 remains unavailable

DeepMind to open first AI science lab in UK 2026

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy

Follow Us

  • News
    • Artificial Intelligence
    • Cybersecurity
    • DeFi & Blockchain
    • Finance
    • Gaming
    • Startups
    • Tech
  • Industry
  • Research
  • Resources
    • Articles
    • Guides
    • Case Studies
    • Whitepapers
  • Newsletter
  • + More
    • Glossary
    • Conversations
    • Events
    • About
      • About
      • Contact
      • Imprint
      • Legal & Privacy
      • Partner With Us
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.