Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Why You Need Python Machine Learning to Build a Recommendation System

by Maria Weinberger
January 18, 2018
in Machine Learning
Home Topics Data Science Machine Learning
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

Recommendation systems are ever-present in our lives today. The largest web giants – such as Google, Facebook and Amazon – use algorithms to help you find search results most relevant to you, based on your previous searches and similar data from other users. In fact, pretty much any platform that has a search bar can collect search data to help provide you with more relevant results.

Developers, data scientists and many businesses involved in collecting data have become deeply entrenched in creating the perfect recommendation systems. Many have found the ideal way to do it: using Python Machine Learning and AI.

Building a recommendation system can be approached in various ways. Oftentimes, this type of project is an important part of learning how to become a data scientist – a rite of passage that can prove them worthy – especially if their system can make some interesting discoveries.

Table of Contents

  • Diving in to Recommendation Systems
  • Using Python Machine Learning and AI for Recommendation Systems
  • Moving Forward with Python

Diving in to Recommendation Systems

If you’re looking to begin building a recommendation system, try something simple and easy like building a personal movie recommendation system.


Join the Partisia Blockchain Hackathon, design the future, gain new skills, and win!


Before you can begin building a recommendation system, you first need to identify what kind you want to build. According to software engineer Eric Le, there are three types of recommendation systems: content-based, collaborative (or collaborative filtering) and popularity. Content-based works by collecting data based on user actions, such as rating items or clicking on links. Collaborative provides suggestions based on the recommendations of other users. Popularity provides suggestions by offering the most popular items that relate to your searches.

After determining what type of recommendation system you want to build, you will need to find an appropriate dataset to apply to it. There are quite a few online that you can experiment with (music is a good place to start!). After you’ve amassed some data, you can start compiling interesting insights and test your recommendation system.

But before you can get to the exciting building process, you will need to choose the system you’ll build with.

Using Python Machine Learning and AI for Recommendation Systems

One of the most common ways to build a recommendation system is to use Python Machine Learning. Python offers probably the most popular and powerful interpreted language, which means that when you build your recommendation system, you will be able to work with others. Python is used for systems in production right now around the world. Once you become familiar with how it works, you can continue using it for real projects instead of having to learn an entirely new language. Knowing Python is a huge competitive advantage to anyone seeking to work in the data science industry.

Python Machine Learning oftentimes goes hand in hand with getting to know AI – one of the top five key trends shaping business in 2017, as highlighted by InData labs. Python Machine Learning makes AI less intimidating by simplifying it. This allows you to build more complicated recommendation systems more efficiently and with less stress.

If you’re still not convinced that Python is the way to go, here are three concrete ways that this language will help you:

  • Code – With Python, you can write and test code in the easiest way possible. This makes dealing with algorithms a lot more manageable. Plus, Python is very malleable when applying to new operating systems and is pretty handy when gluing together different types of data.
  • Libraries – A Python library, as explained by Yilun Zhang, is a collection of functions and methods that allows you to perform lots of actions without writing your own code. Python offers a large variety of libraries to explore, with subjects ranging from scientific computing to, of course, machine learning (try PyBrain).
  • Community – Python has a huge community made up largely of young and ambitious programmers, many of which are more than happy to help each other out on different projects and issues. In addition, Python is completely open source and there is a fair amount of material available online that can teach you all the tips and tricks you need to master it.

Moving Forward with Python

Python Machine Learning is not only the leading way to learn how to build a recommendation system, it is also one of the best ways to build a recommendation system in general. Knowing a fantastically simple language is a skill you can use for life.

To think of Python as the step before advanced coding would be wrong. Python is the modern standard. Yes, learning all the complicated ‘ins’ and ‘outs’ of coding is impressive, but at the same time, coding doesn’t need to be such a time consuming process. This is especially true if your main goal is to collect data, not to learn to write code. Of course, no matter what machine learning system you plan to use, it will take a significant investment of your time, so remember to be patient and enjoy the learning process!

Like this article? Subscribe to our weekly newsletter to never miss out!

Related Posts

What is multimodal AI: Understanding GPT-4

Tracing the evolution of a revolutionary idea: GPT-4 and multimodal AI

March 15, 2023
What are natural language processing and conversational AI

A journey from hieroglyphs to chatbots: Understanding NLP over Google’s USM updates

March 14, 2023
Machine learning in asset pricing explained

Rethinking finance through the potential of machine learning in asset pricing

March 3, 2023
Exploring the intricacies of deep learning models

Exploring the intricacies of deep learning models

February 28, 2023
machine learning prediction

Insights from the game of Go: Discussing ML prediction

February 24, 2023
embedded machine learning 101

Exploring the exciting possibilities of embedded machine learning for consumers

February 13, 2023

Comments 2

  1. Oh So Shutters says:
    5 years ago

    Hi Maria!! can i get your email? I would like to discuss more about the writing!

    Thanks
    S.W.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

LATEST ARTICLES

Runway AI Gen-2 makes text-to-video AI generator a reality

Maximizing the benefits of CaaS for your data science projects

Microsoft 365 Copilot is more than just a chatbot

The silent spreaders: How computer worms can sneak into your system undetected?

Mastering the art of storage automation for your enterprise

Can Komo AI be the alternative to Bing?

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy
  • Partnership
  • Writers wanted

Follow Us

  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.