Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Google & Stanford Say Big Data & Deep Learning Are the Future of Drug Discovery

by Dataconomy News Desk
March 23, 2015
in Machine Learning, News
Home Topics Data Science Machine Learning
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

Pande Lab at Stanford University in collaboration with Google released a paper earlier this week that focuses on how neural networks and deep learning technology could be crucial in improving the accuracy of determining which chemical compounds would be effective drug treatments for a variety of diseases.

A Google Research blog post explains how in the recent past, computational methods using deep learning with neural networks have attempted to ‘replace or augment the high-throughput screening process.’

So far, virtual drug screening has used existing data on studied diseases; but the volume of experimental drug screening data across many diseases continues to grow.

The paper titled “Massively Multitask Networks for Drug Discovery,” among other things, quantifies how the amount and diversity of screening data from a variety of diseases with very different biological processes can be used to improve the virtual drug screening predictions, explains the blog.

Working with a total of 37.8M data points across 259 distinct biological processes, using large-scale neural network training system to train at a scale 18x larger than previously used, the researchers managed to “probe the sensitivity of these models to a variety of changes in model structure and input data.”


Join the Partisia Blockchain Hackathon, design the future, gain new skills, and win!


“In the paper, we examine not just the performance of the model but why it performs well and what we can expect for similar models in the future. The data in the paper represents more than 50M total CPU hours.”

The entire effort, although it does not outline any milestone, is a step towards discerning an accurate and time saving method in drug discovery, that was traditionally almost impossible.

Follow @DataconomyMedia

(Image credit: Erich Ferdinand, via Flickr)

 

Tags: Deep learningDrug DiscoveryGoogleHealthMachine Learning NewsletterResearch PapersstanfordWeekly Newsletter

Related Posts

The latest ChatGPT DAN prompt is here! Learn how to jailbreak ChatGPT-4 and explore ChatGPT jailbreak prompts. Meet ChatGPT uncensored...

Playing with fire: The leaked plugin DAN unchains ChatGPT from its moral and ethical restrictions

March 31, 2023
What is Microsoft Security Copilot? Learn how to access and use it. We explained everything you need to know about the GPT-4 powered chatbot.

Microsoft Security Copilot is the AI-ssential tool for cybersecurity experts

March 29, 2023
Consensus AI makes accessing scientific information easier than ever

Consensus AI makes accessing scientific information easier than ever

March 27, 2023
robotic process automation vs machine learning

A comprehensive comparison of RPA and ML

March 27, 2023
ChatGPT now supports plugins and can access live web data

ChatGPT now supports plugins and can access live web data

March 24, 2023
What is the Microsoft Loop app, and how to access it? We explained everything you need to know about the new Notion rival. Keep reading...

Microsoft Loop is here to keep you always in sync

March 29, 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

LATEST ARTICLES

Playing with fire: The leaked plugin DAN unchains ChatGPT from its moral and ethical restrictions

The art of abstraction in computer science

AI whisperers, fear, Bing AI ads and guns: Was Elon right?

The strategic value of IoT development and data analytics

AI experts call for pause in development of advanced systems

Microsoft Security Copilot is the AI-ssential tool for cybersecurity experts

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy
  • Partnership
  • Writers wanted

Follow Us

  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.