Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Researcher at MIT Develops Machine Learning Algorithm to Predict Price Variation of Bitcoin

by Eileen McNulty
October 23, 2014
in Machine Learning, News
Home Topics Data Science Machine Learning
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

A researcher at MIT has developed a machine-learning algorithm that can predict the price of the “infamously volatile crypto-currency Bitcoin.”

Principal investigator Devavrat Shah, at MIT’s Computer Science and Artificial Intelligence Laboratory and the Laboratory for Information and Decision Systems along with recent graduate Kang Zhang, used  “Bayesian regresion,” to train an algorithm to automatically identify patterns from price data they had collected from all major Bitcoin exchanges every second for five months, which they used to predict prices, and trade accordingly, reports MIT News.

“We developed this method of latent-source modeling, which hinges on the notion that things only happen in a few different ways,” said  Mr. Shah. “Instead of making subjective assumptions about the shape of patterns, we simply take the historical data and plug it into our predictive model to see what emerges,” thus allowing his team to nearly double its investment over a period of 50 days.

Essentially, “every two seconds they predicted the average price movement over the following 10 seconds. If the price movement was higher than a certain threshold, they bought a Bitcoin; if it was lower than the opposite threshold, they sold one; and if it was in-between, they did nothing,” explains MIT News.

The team’s total 2,872 trades ended with an 89 percent return on investment with a Sharpe ratio (measure of return relative to the amount of risk) of 4.1, over a period of 50 days. An exhaustive explanation is available in the paper published earlier this month at the 2014 Allerton Conference on Communication, Control, and Computing.


Join the Partisia Blockchain Hackathon, design the future, gain new skills, and win!


In the future, Mr. Shah would like to test the effectiveness of his algorithm and feels confident about modeling virtually any quantity that varies over time.

Read more here.

(Image credit: Jason Benjamin)

Tags: bitcoinMachine LearningMIT

Related Posts

Adversarial machine learning 101: A new frontier in cybersecurity

Adversarial machine learning 101: A new cybersecurity frontier

January 31, 2023
How did ChatGPT passed an MBA exam

How did ChatGPT passed an MBA exam?

February 2, 2023
Google code red: ChatGPT and You.com like AI-powered tools threatening the search engine. Moreover, latest Apple Search rumors increased the danger.

Google code red: ChatGPT, You.com and rumors of Apple Search challenge the dominance of search giant

February 2, 2023
T-Mobile data breach 2023 explained: Learn how did the leak happen and explore T-Mobile data breach history. It is not the first time of the company

T-Mobile data breach 2023: The telecom giant got hacked eight times in the last six years

January 20, 2023
Microsoft layoffs 2023: Amazon job cuts that affect 11,000 employees explained. Big tech layoffs continue... Learn why and what will happen next.

Microsoft layoffs will affect more than 11,000 employees

January 18, 2023
Medibank Data Breach Class Action: Compensation can reach up to $20,000 per person

Medibank Data Breach Class Action: Compensation can reach up to $20,000 per person

January 16, 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

LATEST ARTICLES

Cyberpsychology: The psychological underpinnings of cybersecurity risks

ChatGPT Plus: How does the paid version work?

AI Text Classifier: OpenAI’s ChatGPT detector indicates AI-generated text

A journey worth taking: Shifting from BPM to DPA

BuzzFeed ChatGPT integration: Buzzfeed stock surges after the OpenAI deal

Adversarial machine learning 101: A new cybersecurity frontier

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy
  • Partnership
  • Writers wanted

Follow Us

  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.