Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
Subscribe
No Result
View All Result
Dataconomy
No Result
View All Result

Uber Simulate Artificial City in Order to Optimize Service, Upturn earnings

by Eileen McNulty
August 16, 2014
in News
Home News
Share on FacebookShare on TwitterShare on LinkedInShare on WhatsAppShare on e-mail

Disrputive taxi service provider Uber has seemingly found out a way to maximize its earnings by figuring out exactly how to position its drivers.

In a recent blog post, Uber data scientist Bradley Voytek talks about how Uber’s “science team” simulated a city and found out that taxi drivers can remain parked between trips and still earn twice as much as those who drive around in search of passengers.

Uber’s Data scientists created an artificial city called Uberg, that spans 100-by-100 blocks, existing in the artificial world of Python. Uber drops 250 passengers and 500 drivers in Uberg. Each passenger has a random destination in Uberg. Here drivers are simulated in three ways. Type-one drivers remain positioned between trips, while type-two drivers go back to the high-demand hotspots after each trip and type-three drivers motor around randomly between trips.

It was observed that when the dispatch distance is one block, which is equivalent to a street hail-only system, the drivers moving randomly lose less trips and get more customers but at a dispatch distance of five blocks when drivers receive passenger information in that perimeter, all the three types of drivers complete the same number of trips.
The simulation also teaches drivers to optimize shuttling between being stationary and being in a hotspot.

While Uber has been enlisting data scientists for sometime now, competitor Lyft is looking to boost its own operations through data analysis, given that it hired a vice president of data science from Netflix last December. With market competition rearing to build up and the inclusion of new tech Uber is looking to turn new stones with its research team.


Join the Partisia Blockchain Hackathon, design the future, gain new skills, and win!


Read more here.
(Image credit: David Holt)

Follow @DataconomyMedia

Tags: Uber

Related Posts

Runway AI Gen-2 makes text-to-video AI generator a reality

Runway AI Gen-2 makes text-to-video AI generator a reality

March 21, 2023
Can Komo AI be the alternative to Bing?

Can Komo AI be the alternative to Bing?

March 17, 2023
GPT-4 powered LinkedIn AI assistant explained. Learn how to use LinkedIn writing suggestions for headlines, summaries, and job descriptions.

LinkedIn AI won’t take your job but will help you find one

March 16, 2023
OpenAI released GPT-4, the highly anticipated successor to ChatGPT

OpenAI released GPT-4, the highly anticipated successor to ChatGPT

March 15, 2023
What is Reimagine Home AI with examples? Learn how to use Reimagine Home AI and find out how AI can help interior designers. Keep reading...

Reimagine Home AI wants to redesign your home

March 15, 2023
How to use Visual ChatGPT? Explore Visual ChatGPT examples. Microsoft isn't just working on it, GPT-4 release date is coming soon too!

Visual ChatGPT brings AI image generation to the popular chatbot

March 15, 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

LATEST ARTICLES

Runway AI Gen-2 makes text-to-video AI generator a reality

Maximizing the benefits of CaaS for your data science projects

Microsoft 365 Copilot is more than just a chatbot

The silent spreaders: How computer worms can sneak into your system undetected?

Mastering the art of storage automation for your enterprise

Can Komo AI be the alternative to Bing?

Dataconomy

COPYRIGHT © DATACONOMY MEDIA GMBH, ALL RIGHTS RESERVED.

  • About
  • Imprint
  • Contact
  • Legal & Privacy
  • Partnership
  • Writers wanted

Follow Us

  • News
  • AI
  • Big Data
  • Machine Learning
  • Trends
    • Blockchain
    • Cybersecurity
    • FinTech
    • Gaming
    • Internet of Things
    • Startups
    • Whitepapers
  • Industry
    • Energy & Environment
    • Finance
    • Healthcare
    • Industrial Goods & Services
    • Marketing & Sales
    • Retail & Consumer
    • Technology & IT
    • Transportation & Logistics
  • Events
  • About
    • About Us
    • Contact
    • Imprint
    • Legal & Privacy
    • Newsletter
    • Partner With Us
    • Writers wanted
No Result
View All Result
Subscribe

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Policy.